Tecnología Info Tecnología

Los sistemas de seguridad que implementan una diversidad de tecnologías de detección pueden contrarrestar los posibles efectos de fugas, incendios y explosiones

H2: el combustible del futuro

Ramón Torra Piqué, Dr. Ingeniero Industrial05/11/2024

La adopción del hidrógeno (H2) como fuente de energía renovable, limpia y sin emisiones de carbono, promete una revolución global que eliminará las emisiones nocivas responsables del cambio climático. Este artículo describe las oportunidades e implicaciones de una sociedad emergente del hidrógeno y examina los riesgos y desafíos de seguridad en el lugar de trabajo, que se plantean durante la producción, manipulación, transporte y almacenamiento, junto con las mejores prácticas, medidas de seguridad y tecnologías de detección sugeridas.

La eliminación del CO2 es ahora un imperativo global (figura 1). En la Conferencia de las Naciones Unidas sobre el Cambio Climático de 2021 (COP26), 64 países (que representan el 89% de las emisiones globales de dióxido de carbono (CO2)) se comprometieron a alcanzar el objetivo de cero emisiones netas.

Según McKinsey, para 2050, la electricidad y el hidrógeno y los combustibles sintéticos que lo permiten podrían representar el 50% de la combinación energética. Desde una perspectiva ambiental y de sostenibilidad, pasar al hidrógeno como fuente de combustible es extremadamente atractiva. Ya sea que el gas hidrógeno se utilice para producir calor a través de la combustión o reaccione químicamente con el aire en una celda de combustible para crear electricidad, cuyo único subproducto es agua. Por el contrario, la quema de combustibles fósiles libera múltiples emisiones nocivas: gases de efecto invernadero como el dióxido de carbono (CO2), los óxidos de nitrógeno (NOx), y micropartículas sólidas que pueden ser altamente tóxicas.

Figura 1...

Figura 1: Diagrama de instalaciones de producción que pueden consumir energía consumiendo hidrógeno en lugar de combustibles fósiles, al objeto de reducir la emisión de CO2.

El hidrógeno, que comprende alrededor del 75% de la masa elemental del universo, es el tercer elemento más abundante en la superficie de la Tierra, después del oxígeno y el silicio. Las moléculas de hidrógeno están en todas partes: ligadas a nuestras plantas, al agua de lluvia, a lagos y océanos, en productos biológicos de desecho, como el gas metano, los excrementos animales y los desechos humanos.

Procesos industriales para producción de H2

El hidrógeno se puede producir mediante distintos procesos; cada uno utiliza distintas cantidades de energía y provoca distintas emisiones, incluidas diferentes concentraciones de carbono. Para producir gas hidrógeno, las moléculas de hidrógeno unidas químicamente deben liberarse de fuentes de compuestos existentes, como las mencionadas anteriormente. Dicha liberación requiere energía u otros procesos, que pueden tener diferentes impactos en el medio ambiente. A continuación, desglosamos tres ejemplos de los procesos disponibles actualmente.
  1. En primer lugar, el reformado mediante vapor se puede utilizar para dividir el gas natural o el metano en hidrógeno y CO2. La mayor parte del gas hidrógeno de las plantas químicas y refinerías de petróleo utiliza este proceso para producir ‘hidrógeno gris’, llamado así porque libera alrededor de 10 kg de CO2 por cada kg de hidrógeno producido.
  2. En segundo lugar, el ‘hidrógeno azul’ se forma de la misma manera, pero captura y almacena la mayor parte del CO2 bajo tierra para reducir las emisiones de gases de efecto invernadero.
  3. En tercer lugar, el proceso actual más limpio (figura 2), utiliza electricidad procedente de fuentes renovables como la eólica, la solar y la hidroeléctrica para dividir las moléculas de agua en hidrógeno y oxígeno mediante electrólisis. Esto crea un ‘hidrógeno verde’ libre de carbono que es una fuente de energía atractiva para las industrias que se esfuerzan por reducir las emisiones utilizando tecnologías más limpias, incluidas las industrias del acero, el vidrio y el cemento.
Figura 2: Fuentes de energía renovable que complementan la producida por el consumo de hidrógeno en sus diversas modalidades...

Figura 2: Fuentes de energía renovable que complementan la producida por el consumo de hidrógeno en sus diversas modalidades.

Aplicaciones del combustible de hidrógeno: oportunidades apasionantes

El hidrógeno tiene el potencial apasionante de proporcionar soluciones de energía limpia alternativas para muchos procesos industriales, transporte y aplicaciones de energía doméstica que actualmente dependen de la quema de combustibles fósiles. Los fabricantes de equipos originales de automoción y otros ya han desarrollado sistemas de propulsión con innovadoras baterías de combustible de hidrógeno, y esta tecnología está apareciendo cada vez más en automóviles, autobuses, vehículos ligeros y pesados de combustible e incluso barcos y trenes con cero emisiones. El hidrógeno también representa una fuente potencial de combustible alternativo, con cero emisiones, al gas natural y al petróleo para calefacción y agua caliente domésticas, especialmente significativa, dados los ambiciosos objetivos globales de cero emisiones netas.

Almacenamiento y distribución de hidrógeno (figura 3)

En la mayoría de las aplicaciones, el hidrógeno se almacena en forma de gas. A presión atmosférica normal, el gas hidrógeno ocupa un gran volumen. Por este motivo, y para que sea más fácil y económico transportarlo y almacenarlo, el gas hidrógeno suele comprimirse en tanques de alta presión a 350–700 bar [5.000–10.000 psi]. Como alternativa, el hidrógeno puede almacenarse o transportarse en forma de amoníaco, ya que tiene una mayor densidad de almacenamiento, y luego convertirse en hidrógeno. Para almacenar el hidrógeno en forma de líquido, debe enfriarse a una temperatura inferior a -252,8 °C. Como esto requiere tanques muy aislados y equipos criogénicos especializados, el combustible de hidrógeno líquido actualmente solo se utiliza en un número limitado de aplicaciones. Y si bien son posibles las soluciones de almacenamiento de hidrógeno sólido, aún queda realizar mucha investigación para que sean viables en su uso masivo. Por lo tanto, el gas suele seguir siendo la opción más sencilla para el almacenamiento de hidrógeno en este momento.

Figura 3...

Figura 3: Instalación futurista de servicio, para distribución de energía al por menor, desde depósitos de hidrógeno y que actualmente conocemos como ‘gasolineras’.

La infraestructura existente, como los gasoductos y las redes de gas natural, deberían adaptarse antes de poder distribuir hidrógeno desde los centros de producción a los centros de distribución, estaciones de servicio y lugares de uso. De manera similar, el hidrógeno puede almacenarse en estaciones de abastecimiento de combustible para abastecer el transporte marítimo.

El hidrógeno también puede degradar ciertos materiales, como metales y plásticos de uso común, y puede hacerlos frágiles y más propensos a tener fugas. Por este motivo, los tanques de almacenamiento de hidrógeno suelen estar construidos de acero inoxidable o, cada vez más, para aplicaciones de transporte, de tanques compuestos que ahorran peso.

Normativa para controlar riesgos en el manejo del H2 (figura 4)

En el Reino Unido, la normativa sobre sustancias peligrosas y atmósferas explosivas de 2002 (DSEAR) de la Dirección de Seguridad y Salud (HSE) impone a los empleadores la obligación de eliminar o controlar todos los riesgos de atmósferas explosivas en el lugar de trabajo. Dos directivas europeas ATEX (‘Appareils destinés à être utilisés en ATmosphères EXplosibles’) describen los requisitos mínimos de seguridad para los lugares de trabajo y los equipos utilizados en atmósferas explosivas. Las directrices ATEX se centran en el peligro de que se produzcan atmósferas explosivas en el lugar de trabajo debido a la presencia de gases inflamables o polvo combustible mezclado con el aire y en minimizar el riesgo de explosión. La primera, la Directiva 99/92/CE (‘ATEX 153’ o ‘Directiva ATEX para el lugar de trabajo’) cubre los requisitos para mejorar la protección de la salud y la seguridad de los trabajadores potencialmente expuestos a atmósferas explosivas. La segunda, la Directiva 2014/34/UE (‘ATEX 114’ o ‘Directiva sobre equipos ATEX’), se refiere a los equipos y sistemas de protección destinados a utilizarse en atmósferas potencialmente explosivas. En el caso de los gases, las zonas peligrosas se clasifican en tres categorías. Este es el método principal utilizado en todo el mundo para indicar la probabilidad de que exista un peligro de explosión.
  • Zona 0: un área peligrosa en la que una atmósfera inflamable está presente de forma continua o durante períodos prolongados.
  • Zona 1: un área peligrosa en la que una atmósfera inflamable está presente de forma continua o durante períodos prolongados.
  • Zona 2: área peligrosa en la que no es probable que se produzca una atmósfera inflamable durante el funcionamiento normal y, si se produce, existirá durante un breve período.
Figura 4...

Figura 4: Perspectiva de la normativa de seguridad necesaria para la producción, manipulación, transporte, distribución y consumo de hidrógeno, en sus diversas modalidades, cuyo detalle se describe en el texto.

Las áreas que quedan fuera de estas categorías, donde no se esperan atmósferas inflamables, se consideran no peligrosas.

Además, el equipo eléctrico para estas atmósferas explosivas se divide en grupos:

  • Grupo I: reservado para la industria minera.
  • Grupo II: reservado para industrias de superficie con riesgos de gas y se subdivide en IIA, IIB y IIC.

La subdivisión de los gases en los grupos de gases se basa en la energía mínima de ignición con la que una chispa eléctrica puede encender la mezcla de gases. Los gases del grupo IIC, donde se encuentra el hidrógeno, requieren la energía de ignición más baja para encenderse, lo que lo convierte en uno de los gases más peligrosos en este sistema de clasificación.

Seguridad del hidrógeno

A medida que cada vez más industrias adoptan el uso del hidrógeno, es importante que se comprendan los riesgos de trabajar con este combustible y que se implementen las medidas y los sistemas de seguridad adecuados. Si bien el hidrógeno es más seguro de manipular que otros combustibles de uso común (ya que se dispersa rápidamente en el aire y no es tóxico), sigue siendo altamente combustible y es un gas asfixiante. Sus propiedades únicas también plantean desafíos especiales, por lo que, además de las regulaciones generales de seguridad del combustible, existen requisitos regulatorios específicos para quienes trabajan con hidrógeno.

Qué tener en cuenta al trabajar con hidrógeno

Las propiedades químicas del hidrógeno imponen desafíos únicos. Específicamente:

  • El gas no es visible a simple vista y no tiene olor, por lo que es indetectable para los sentidos humanos.
  • El hidrógeno es más liviano que el aire. Se entiende comúnmente que en áreas confinadas se elevará hasta el nivel del techo desplazando el oxígeno, lo que dificulta su detección en espacios donde no pueden producirse acumulaciones. Sin embargo, las fugas de gas hidrógeno presurizado pueden ser difíciles de detectar, ya que la dirección del chorro de gas puede ser impredecible, lo que dificulta la colocación del detector.
  • Cuando se mezcla hidrógeno con el aire es altamente combustible. Sin embargo, una llama de hidrógeno pura es muy pálida y casi invisible a la luz diurna, siendo difícil de detectar con los detectores de calor tradicionales.

El fuego, la explosión y la asfixia son las principales consideraciones de seguridad asociadas con la manipulación de hidrógeno, especialmente si se tiene en cuenta el amplio rango de inflamabilidad del 4 al 77% del volumen en el aire. Las principales áreas de riesgo se pueden clasificar como se detalla en a continuación:

  • Propenso a producir fugas: tamaño molecular reducido, con propiedades de permeación y extremadamente alta difusión.
  • Propenso a inflamarse: muy baja energía de ignición; detonación rápida y amplio rango de inflamación.
  • Consecuencias del fuego: llama invisible con baja radiación térmica; alta temperatura de la llama.
  • Con relación a las personas: daños potenciales o pérdida de la vida; incoloro, inodoro y carente de gusto.

Planificación de la detección: estándares, estrategias y soluciones para sitios que manejan hidrógeno (figura 5)

Actualmente, la protección contra explosiones está regida a nivel internacional por las normas IEC 60079 e IEC 80079, y muchas regiones adoptan estándares casi idénticos a nivel local. Además, también existen normas específicas para las instalaciones de hidrógeno, por ejemplo:

ISO 22734 - Generadores de hidrógeno que utilizan electrólisis del agua - Aplicaciones industriales, comerciales y residenciales: los fabricantes de electrolizadores deben realizar una evaluación de riesgos. Sin embargo, según la ubicación final del equipo, los propietarios/operadores de la planta pueden necesitar realizar su propia evaluación adicional del generador de hidrógeno, aplicando la clasificación de zonas utilizando IEC 60079-10-1 o una norma nacional apropiada.

ISO 19880 - Hidrógeno gaseoso - Estaciones de abastecimiento: los emplazamientos deben inspeccionarse de conformidad con la norma IEC 60079-10-1 o con las regulaciones nacionales suficientes. Esto incluye la clasificación de zonas y los métodos de protección contra ignición según IEC 60079 e IEC 80079.

Ambas normas también especifican los requisitos, para la mitigación de riesgos, con un sistema de detección de gases, como uno de los métodos para evitar la acumulación de mezclas de gases inflamables.

Figura 5...

Figura 5: Fotografía con la situación de las diversas tecnologías de detección de fugas de hidrógeno que se precisan para dotar de seguridad una instalación típica que lo utiliza como fuente de energía.

La necesidad de una protección estratificada contra incendios y gases (figura 6)

La energía mínima de ignición del hidrógeno en el aire a presión atmosférica es de aproximadamente 0,02 mJ. En el caso de una fuga de gas hidrógeno, especialmente en un espacio confinado, una descarga eléctrica estática de la ropa o el equipo de un trabajador podría provocar una explosión o un incendio. En combinación con las propiedades físicas destacadas anteriormente, se necesita una estrategia sólida y estratificada para la detección de incendios y gases, respaldada por modelos de columnas y mapas de gas para demostrar la eficacia de un sistema de detección de hidrógeno. Los desafíos clave para cualquier sitio que manipule o almacene hidrógeno, como una planta de producción de hidrógeno electrolítico o una estación de abastecimiento de hidrógeno, incluyen la detección de fugas en el exterior, donde el gas no se puede acumular, y la instalación de detectores de manera apropiada dentro de diferentes zonas de riesgo. Por lo tanto, para detectar cualquier pérdida de contención de hidrógeno se requiere la aplicación de varias tecnologías distintas, pero complementarias, que abarcan la detección de fugas por ultrasonidos, la detección de gases convencional y la detección de llamas. A continuación, solamente se describe el principio básico de funcionamiento del sensor que implica su elección y situación en la planta industrial que produce, almacena, transporta o utiliza el hidrógeno.
Figura 6...

Figura 6: Esquema indicador de la selección de zonas para situar los diversos tipos de detección de hidrógeno, usando la adecuada tecnología de detección.

Detección por ultrasonidos de las fugas de H2

Cuando se produce una fuga de gas hidrógeno, se genera un sonido ultrasónico en el punto de salida. Los monitores ultrasónicos detectan el ultrasonido provocado por el caudal turbulento que destaca de un predeterminado nivel de sonido presurizado.

Niveles bajos y combustibles de hidrógeno: detección de gas puntual

Los detectores de gas puntuales para hidrógeno utilizan sensores catalíticos o electroquímicos.

Detección de llama de hidrógeno

En caso de incendio como resultado de una fuga de gas no detectada debido, por ejemplo, a una colocación o selección incorrecta del detector de gas o a una falla del sensor, los detectores de llama específicos para hidrógeno brindan una advertencia para implementar medidas de seguridad y supresión de incendios.

Nota: en la figura 7 se ilustra la apariencia que presentan los monitores de campo confirme al sensor que incorporan. No se incluye en este artículo mayor detalle sobre los principios tecnológicos básicos usados en la detección de H2 y sus características, por considerarlo un tema importante y precisar dedicarle el espacio necesario que ahora no dispongo.

Figura 7...

Figura 7: Detalle de la apariencia típica de los tres sistemas de detección de hidrógeno, utilizando en más apropiado principio tecnológico para su detección.

Conclusiones

La producción de hidrógeno sigue creciendo, impulsada por la legislación ambiental y la demanda de combustibles más limpios y de mayor calidad. Sin embargo, el aumento de la producción debe ir acompañado de un enfoque integral de la seguridad de las plantas. Las nuevas instalaciones que utilizan hidrógeno deben diseñarse con las salvaguardas adecuadas contra los posibles peligros; también debe revisarse el diseño de las instalaciones antiguas para garantizar que haya suficientes barreras disponibles para minimizar los accidentes y controlar las fallas.

Los sistemas de seguridad que implementan una diversidad de tecnologías de detección pueden contrarrestar los posibles efectos de fugas, incendios y explosiones, evitando daños a equipos o propiedades, lesiones personales y pérdida de vidas. Una combinación de detectores de llama y detectores de gas catalíticos y ultrasónicos es particularmente eficaz porque son complementarios. Las vulnerabilidades de uno se compensan con las fortalezas de los otros; los peligros tienen menos posibilidades de propagarse sin ser detectados.

Estos sistemas de seguridad diversos, combinados con un diseño que evita las fugas y elimina posibles fuentes de ignición, ofrecen un enfoque sólido para gestionar los procesos de hidrógeno

Bibliografía

  • Información técnica obtenida desde documentos publicados por MSA.
  • Normativa EN relativa a los EPI que se mencionan en el Texto del artículo.
  • Documentación publicada en Internet por las empresas de protección personal.
  • Figuras cedidas por MSA Safety.

Suscríbase a nuestra Newsletter - Ver ejemplo

Contraseña

Marcar todos

Autorizo el envío de newsletters y avisos informativos personalizados de interempresas.net

Autorizo el envío de comunicaciones de terceros vía interempresas.net

He leído y acepto el Aviso Legal y la Política de Protección de Datos

Responsable: Interempresas Media, S.L.U. Finalidades: Suscripción a nuestra(s) newsletter(s). Gestión de cuenta de usuario. Envío de emails relacionados con la misma o relativos a intereses similares o asociados.Conservación: mientras dure la relación con Ud., o mientras sea necesario para llevar a cabo las finalidades especificadasCesión: Los datos pueden cederse a otras empresas del grupo por motivos de gestión interna.Derechos: Acceso, rectificación, oposición, supresión, portabilidad, limitación del tratatamiento y decisiones automatizadas: contacte con nuestro DPD. Si considera que el tratamiento no se ajusta a la normativa vigente, puede presentar reclamación ante la AEPD. Más información: Política de Protección de Datos

REVISTAS

TOP PRODUCTS

NEWSLETTERS

  • Newsletter Energía

    14/11/2024

  • Newsletter Energía

    07/11/2024

ENLACES DESTACADOS

Net Zero Tech 2025

ÚLTIMAS NOTICIAS

EMPRESAS DESTACADAS

OPINIÓN

ENTIDADES COLABORADORAS

OTRAS SECCIONES

SERVICIOS