Termografía infrarroja como ensayo no destructivo: detección de defectos en componentes aerospaciales
Cuando el flujo de calor en un material es alterado por la presencia de anomalías o defectos provoca contrastes de temperatura en su superficie. El uso de la TIR como método no destructivo de inspección está basado en la obtención y el análisis de las imágenes de esos patrones térmicos.
Las principales técnicas de TIR se resumen en este artículo y se comentan algunas de sus aplicaciones. También se muestran algunos resultados de ensayos de TIR en materiales compuestos y componentes metálicos aeronáuticos.
Técnicas de TIR
No obstante, su principal desventaja es que es efectivo únicamente en la detección de defectos poco profundos. También resulta complicado producir un calentamiento uniforme al aplicar las técnicas activas y pueden existir variaciones de emisividad en diferentes partes del cuerpo estudiado.
Termografía pasiva
La TIR pasiva se usa, por ejemplo, para la monitorización del producto en procesos de fabricación, monitorización de procesos de soldadura o comprobación de la eficiencia de los discos de freno de automóviles. También puede ser usada en mantenimiento predictivo, como en rodamientos, turbinas y compresores, instalaciones eléctricas, tuberías enterradas o fugas de gas [1, 2]. Existen otras muchas aplicaciones no industriales como son las de tipo medicinal en detección de cáncer de pecho o desordenes vasculares, detección de fuegos, detección de objetivos (militar) o localización de perdidas de calor y humedades en edificios [1, 2].
Termografía activa
La TIR pulsada (Pulsed Thermography) consiste en aplicar un pulso corto de calor sobre el objeto (de 3 msg. a 2 s. dependiendo del material) y grabar el enfriamiento del espécimen. El frente térmico aplicado se propaga en el material y cuando encuentra un defecto el ratio de difusión es reducido produciendo un contraste de la temperatura sobre ese punto. De esta manera, el contraste de defectos más profundos aparecerá más tarde y con menor diferencia de temperaturas [1] (ver figura 1. La TIR pulsada es usada, por ejemplo, en la inspección de componentes estructurales de aviones, control de calidad de soldadura por puntos, álabes de turbina, detección de desencolados, delaminaciones, grietas o corrosión [2].
La TIR lock-in está basada en la generación de ondas de calor dentro del espécimen inspeccionado (por ejemplo, depositando periódicamente calor en el cuerpo por medio de una lámpara modulada) y monitorizando de forma sincronizada el campo de temperaturas oscilante obtenido mediante una computadora o un amplificador lock-in. Por transformación de Fourier se obtienen las imágenes de fase y amplitud de la temperatura. Las imágenes fase están menos afectadas por inhomogeneidades del calentamiento y de la emisividad, y son más sensibles en profundidad que otras técnicas de TIR. Sin embargo, requiere como mínimo la observación de un ciclo de modulación y cada ensayo es realizado para una frecuencia estudiando una profundidad cada vez, lo que aumenta el tiempo de inspección. [1, 2].
La TIR lock-in es usada, por ejemplo, en inspecciones de componentes estructurales, detección de remaches sueltos, investigación de estructuras de absorción de radar y detección de grietas, desencolados, etc. [1,2]. Si en lugar de realizar un calentamiento mediante lámparas de luz modulada se usa una vibración mecánica inducida externamente como excitación se hablaría de vibrotermografía.
Una alternativa es la utilización de un transductor piezoeléctrico como fuente de estimulación, que sería el caso de la denominada TIR lock-in ultrasónica. Estas dos últimas técnicas están dirigidas a la detección rápida de grietas en materiales metálicos, laminados y cerámicos, corrosión en planchas metálicas remachadas o delaminaciones en laminados [4, 7]. Otra variación es la TIR lock-in termoinductiva que excita corrientes de Eddy en materiales conductores mediante una bobina de inducción y la resistencia de los materiales genera un calentamiento local. La mayor densidad de corriente en las grietas provoca una temperatura mayor que es detectada por la cámara termográfica. Esta técnica ha sido probada en detección de grietas longitudinales en barras y tochos de acero aparecidas durante su moldeado en caliente [5] y en álabes de compresores [6].
La TIR de fase pulsada (Phase Pulsed Thermography) es una mezcla entre la TIR lock-in y TIR pulsada. La aplicación del ensayo es la misma que en termografía pulsada pero la adquisición de datos es tratada mediante transformada de Fourier para obtener la amplitud y la fase de la imagen a diferentes frecuencias con un único ensayo, con la consecuente rapidez de ensayo [1,2]. De igual manera, se puede conseguir una variación de la termografía lock-in ultrasónica utilizando un pulso ultrasónico en vez de una excitación continua. Esta técnica es denominada Ultrasound Burst Phase Thermography [4].
Procesamiento de datos
Ejemplos de detección de defectos en materiales aeronáuticos
La lanzadera espacial reutilizable X-37 de la NASA bajo desarrollo tiene un 90% de la piel externa del fuselaje de grafito-epoxi, que es inspeccionada mediante TIR pulsada. Realizan estas inspecciones antes y después de ensayos de aplicación de carga full-scale para localizar la creación y propagación de defectos como desencolados. Mediante esta técnica también son llevadas a cabo inspecciones de daños en ensayos de impacto de espuma y hielo en las alas, bordes de ataque y cola son llevados a cabo utilizando esta técnica [7].
Los materiales metálicos están presentes en una gran cantidad de componentes estructurales de aeronaves. Del mismo modo que se desarrollan los materiales compuestos y en algunos casos en competencia con éstos, los fabricantes de elementos metálicos, ofrecen cada vez metales más avanzados como nuevas aleaciones de aluminio o de titanio. La TIR también es utilizada para la inspección rápida de defectos típicos como las grietas o la corrosión oculta en las estructuras metálicas.
El Centro de Tecnologías Aeronáuticas (CTA) está trabajando junto a Gamesa Desarrollos Aeronáuticos (GDA), Taucon e investigadores de UPV en un completo sistema de inspección para la detección de defectos típicos en aeronaves, tanto en metales como en compuestos (delaminaciones, desencolados, etc.) También incluye un procesamiento de imágenes de los defectos detectados combinado con un modelo matemático de comportamiento térmico de defectos. El objetivo final de este proyecto es conseguir un sistema de detección automático aplicable no solo en mantenimiento, sino también en control de calidad en línea de producción.
Las siguientes figuras muestran ejemplos de ensayos de TIR en materiales metálicos y compuestos. En la figura 2 se muestra el resultado de un ensayo de TIR sobre un componente de aeronave con piel de fibra de carbono. Mediante esta técnica se localizó una delaminación causada por un impacto en una zona con solape de laminados remachados que no pudo ser distinguida mediante un examen de ultrasonidos.
A continuación se muestra un ejemplo simple de la capacidad de un adecuado tratamiento de los datos de temperatura capturados en un ensayo de TIR para mejorar la visualización de los defectos, e incluso permitir localizar defectos invisibles en los termogramas originales.
Conclusiones
Agradecimientos y referencias
- Theory and practice of infrared technology for Non-destructive Testing, Xavier Maldague, 2001
- Non-destructive Testing Handbook Third Edition - Volume 3 Infrared and thermal testing, ASNT
- Short course on infrared thermography applications, ENS Cachan 2002
- Ultrasound excited thermography – advances due to frequency modulated elastic, Th. Zweschper, Institute of Polymer Testing and Polymer Science (IKP),