Los resultados obtenidos en las instalaciones de Aitiip han sido muy satisfactorios, logrando varios ciclos de soldadura-separación entre placas de material termoplástico reforzado con fibra de carbono testeadas
HELACS, el proyecto europeo que optimizará un ciclo integral para el reciclaje de aviones
Alejandro Marqués, ingeniero de investigación y desarrollo del Centro Tecnológico Aitiip
10/07/2023Las ventajas de estos materiales respecto a los materiales metálicos usados actualmente en la industria aeronáutica son principalmente su resistencia a la corrosión y los ataques químicos, sus excelentes propiedades aislantes tanto térmicas como eléctricas y su baja densidad. Este último punto es especialmente relevante en la industria, permitiendo disminuir el peso final de la aeronave, y en consecuencia su gasto en combustible. En esta línea, la compañía Airbus cuenta con el modelo A350 en el mercado, la primera aeronave que incluye piezas estructurales fabricadas de material compuesto, acumulando más de un 50% de material compuesto respecto al total de la aeronave.
Si bien, esta revolución ecológica mencionada no acaba con la implementación de los materiales compuestos en la industria, si no que fomenta un desarrollo dentro de la propia industria de los materiales. Actualmente, los materiales compuestos de matriz termoestable ocupan un gran porcentaje del mercado de los composites, siendo implementados no solo en la industria aeronáutica, si no en industrias como la ferroviaria, la automovilística o la marina. Sin embargo, actualmente, los materiales compuestos de matriz termoplástica están comenzando a sustituir a estos composites. La razón de cambio en el paradigma es que diferencia de los materiales termoestables, los materiales termoplásticos pueden ser reciclados y reutilizados. Éste hecho, combinado con el ahorro de energía y tiempo de ciclo de fabricación y unas propiedades mecánicas similares, hacen de los materiales termoplásticos una alternativa prometedora en el campo de los composites. AITIIP es consciente de esto, y por ello es uno de sus ejes y pilares principales de sus líneas de investigación, siendo referente a nivel nacional y europeo en la investigación y desarrollo tanto de los materiales compuestos en si, como de sus procesos de fabricación.
Soldadura.
El proceso de soldadura resistiva termoplástica se produce al calentar 2 superficies de material termoplástico en contacto a una temperatura superior a su temperatura de procesamiento mientras se aplica presión sobre ellas. Al alcanzar dicha temperatura, el termoplástico de la matriz se funde, y al disminuir la temperatura se consigue una solidificación conjunta de la pieza, creando una unión. Para alcanzar dicha temperatura, se posiciona un elemento resistivo entre las placas, en nuestro caso una malla metálica embebida en material termoplástico y aislada eléctricamente mediante fibra de vidrio. Sobre este elemento resistivo se aplica una corriente eléctrica, la cual, mediante efecto Joule aumenta la temperatura de la malla, y por tanto de todo el conjunto y su área de contacto, quedada embebida entre las 2 piezas termoplásticas que se quieren unir. Lo novedoso de este proceso de unión, como se ha mencionado, es su reversibilidad. Las superficies soldadas pueden separarse volviendo a alcanzar la temperatura de proceso del material (mediante la aplicación de corriente eléctrica en su elemento resistivo), pero ejerciendo fuerzas de separación entre las piezas, en lugar de presión entre ellas.
Los resultados obtenidos en las instalaciones de Aitiip han sido muy satisfactorios, logrando varios ciclos de soldadura-separación entre placas de material termoplástico reforzado con fibra de carbono testeadas. El proceso, sin embargo, requiere de una optimización en futuras etapas, minimizando el efecto de dichos ciclos en las piezas.
Avión desmantelado.