Info

Con las mejores recomendaciones de IA

Identificación de códigos de barras

Henning Grönzin, CTO de Leuze

11/01/2022
Recurrir a la inteligencia artificial (IA) puede resultar muy útil para identificar los códigos de barras de mercancías. Los factores de interferencia se pueden identificar de forma rápida y sencilla durante la puesta en marcha y durante el funcionamiento de un sistema.
Lector de código 2D DCR 200i
Lector de código 2D DCR 200i.

Se acaban las búsquedas que requieren mucho tiempo

Los lectores de códigos de barras son sensores utilizados para identificar mercancías y materiales en el ámbito de la producción o logística. Detectan los códigos de barras que cumplen una serie de normas y suministran sus números de identificación a un sistema superior. Para su uso en aplicaciones automatizadas, el objetivo principal es conseguir la máxima calidad de lectura posible: Básicamente, los lectores de códigos de barras detectan las etiquetas con diferente calidad, que puede especificarse en gradaciones porcentuales.

El valor porcentual se refiere al comportamiento del contraste escaneado. Si el valor es inferior a un determinado umbral, la etiqueta no se lee. Uno de los retos para los operarios de la planta es encontrar lo antes posible los lectores de códigos de barras que no proporcionan una calidad de lectura suficiente e identificar las razones - sin datos adicionales sobre las posibles fuentes de error, esto puede suponer un gran esfuerzo. Sobre todo, en el caso de grandes sistemas, como por ejemplo en la intralogística, donde puede haber hasta 1.000 lectores de códigos de barras y rutas de transporte kilométricas, es como buscar una aguja en un pajar.

En caso de duda, un técnico tiene que trazar todo el recorrido del material con el fin de localizar un sensor mal alineado o los factores de interferencia en su entorno directo, todo ello bajo la presión del tiempo. La situación se complica aún más en los casos límite como por ejemplo cuando el lector de códigos de barras está suficientemente alineado y lee correctamente la mayor parte del tiempo, pero a veces no detecta las etiquetas. Esto puede ocurrir si el lector de códigos de barras está ligeramente inclinado, si solo lee en la zona límite o bien por otros factores, como etiquetas de calidad insuficiente.

Lector de código 2D DCR 200i en funcionamiento en la aplicación de la máquina-herramienta
Lector de código 2D DCR 200i en funcionamiento en la aplicación de la máquina-herramienta.

Factores que influyen sobre la calidad de lectura

Sin embargo, la generación de los datos correspondientes para encontrar las causas de los errores solo es posible de forma limitada a través de los propios lectores de códigos de barras. Es cierto que los sensores monitorizan su propio estado y transmiten datos a través de OPC UA al sistema de nivel superior si se requiere. Sin embargo, esta monitorización automática tiene una funcionalidad muy limitada ya que cada sensor solo tiene en cuenta su propia visión. Esto significa que envía información como “leyendo”, “leyendo especialmente bien“o”leyendo especialmente mal”, es decir, su porcentaje determinado de calidad de lectura.

El propio dispositivo no puede identificar las causas de la mala calidad de lectura. Hay tres factores que pueden influir: el propio dispositivo, la etiqueta del código de barras o los factores de interferencia del entorno. Las posibles fuentes de error con respecto al propio lector de códigos de barras son, por ejemplo, una mala alineación con las etiquetas que hay que capturar o defectos técnicos. Las etiquetas, a su vez, pueden estar dañadas, sucias o mal impresas, lo cual puede reducir la calidad de lectura o impedir su identificación, dependiendo del grado de daño o de calidad de impresión. Entre los factores de interferencia del entorno se encuentran las vibraciones, el polvo y el resplandor de la luz solar o emisores de fondo. La humedad, como por ejemplo en los almacenes de congelación, también puede ser un factor de interferencia si provoca un empañamiento de la ventana de visualización del lector de códigos de barras.

Lector de códigos de barras BCL 300i
Lector de códigos de barras BCL 300i.

Inteligencia artificial proporciona el contexto

La IA puede ayudar a distinguir entre las distintas causas y así identificar rápidamente los motivos de las averías o la mala calidad de la lectura. Leuze está colaborando con un fabricante de automóviles para desarrollar una solución que proporciona los datos del contexto general a los sensores. La ventaja que aporta es que los lectores de códigos de barras siguen funcionando con normalidad sin generar trabajo de instalación adicional para el cliente. Se trata de grandes cantidades de datos: Durante el proceso pasan muchas etiquetas por muchos lectores de códigos de barras y se leen en diferentes lugares de la instalación. De aquí proviene el contexto general. En términos matemáticos, este contexto se puede describir como una ecuación con muchas incógnitas: innumerables lectores de códigos de barras, etiquetas que aparecen con una frecuencia aún mayor y distintos lugares de instalación de los lectores. En cada estación y para cada etiqueta hay un resultado distinto de porcentaje de calidad de lectura. La IA resuelve este complicado sistema de ecuaciones y determina si hay una mala calidad de lectura en el mismo lector de códigos de barras, con una etiqueta, con un tipo de etiqueta específico o en la misma instalación.

Aprendizaje automático mediante algoritmos de recomendación

Para ello, Leuze utiliza algoritmos de recomendación, es decir, métodos de recomendación basados en IA. Son los mismos métodos que utilizan, por ejemplo, los servicios de streaming para evaluar el comportamiento de los usuarios y recomendarles películas o series adecuadas en función de ello. En esta analogía del comportamiento de los usuarios, los códigos de barras corresponden a las películas y los lectores de códigos de barras a los usuarios del streaming. El algoritmo de recomendación califica una etiqueta como más o menos “atractiva“para diferentes lectores de códigos de barras. De este modo, es posible determinar qué sensor o etiqueta es”poco atractiva” con un determinado porcentaje, es decir, limítrofe o llamativa.

Lectura de códigos de barras en transportadores con el BCL 300i
Lectura de códigos de barras en transportadores con el BCL 300i.

Mediante dispositivo Edge o la nube

Desde un punto de vista técnico, esta solución basada en la IA puede implementarse a través de dispositivos Edge o a través de la nube, dependiendo de los requisitos del cliente y del sistema. Un dispositivo Edge es un dispositivo independiente en las proximidades de una red de sensores que recoge, analiza y transmite sus datos. También se pueden conectar varios dispositivos Edge entre sí. Dado que un dispositivo Edge no solo recoge y evalúa los datos en el sentido de la comunicación bidireccional, sino que también devuelve el análisis al sensor, un lector de códigos de barras también puede transmitir esta información e informar de que hay un problema. La ventaja es que no hay que modificar la arquitectura informática del cliente. Alternamente también puede funcionar a través de la nube si los datos deben juntarse en lugares espacialmente separados.

Importante potencial de ahorro

El enfoque de Leuze de utilizar recomendaciones basadas en la IA para la identificación de errores ofrece enormes ventajas tanto durante la puesta en marcha como durante el funcionamiento continuo de un sistema. La puesta en marcha rápida ahorra tiempo y costes. En este caso, es beneficioso que se revelen inmediatamente las causas de la mala calidad de la lectura. Durante el funcionamiento, el método permite el mantenimiento predictivo (Predictive Maintenance). Esto significa que, si se hace evidente que será necesaria parar el sistema, los operarios pueden tomar las medidas adecuadas a tiempo y, por ejemplo, producir o desalmacenar por adelantado, y mantener así un alto nivel de rendimiento de entrega al cliente. Esta detección temprana puede beneficiarse de los datos de varios años de funcionamiento. Además, el sistema aprende continuamente. Por lo tanto, el uso de la IA siembre resulta rentable cuando se trata de reconocer de forma rápida y fiable los factores de interferencia durante la identificación de los códigos de barras de las mercancías

Henning Grönzin, CTO de Leuze
Henning Grönzin, CTO de Leuze.

Empresas o entidades relacionadas

Leuze Electronic, S.A.U.

Comentarios al artículo/noticia

Deja un comentario

Para poder hacer comentarios y participar en el debate debes identificarte o registrarte en nuestra web.

Suscríbase a nuestra Newsletter - Ver ejemplo

Contraseña

Marcar todos

Autorizo el envío de newsletters y avisos informativos personalizados de interempresas.net

Autorizo el envío de comunicaciones de terceros vía interempresas.net

He leído y acepto el Aviso Legal y la Política de Protección de Datos

Responsable: Interempresas Media, S.L.U. Finalidades: Suscripción a nuestra(s) newsletter(s). Gestión de cuenta de usuario. Envío de emails relacionados con la misma o relativos a intereses similares o asociados.Conservación: mientras dure la relación con Ud., o mientras sea necesario para llevar a cabo las finalidades especificadasCesión: Los datos pueden cederse a otras empresas del grupo por motivos de gestión interna.Derechos: Acceso, rectificación, oposición, supresión, portabilidad, limitación del tratatamiento y decisiones automatizadas: contacte con nuestro DPD. Si considera que el tratamiento no se ajusta a la normativa vigente, puede presentar reclamación ante la AEPD. Más información: Política de Protección de Datos