Tendencias: más rapidez y fiabilidad
12 de junio de 2009
Panorámica del sector
Estos avances metodológicos e instrumentales están muy directamente relacionados con las necesidades del control de calidad de los diferentes sectores industriales, así como de las normativas de los mismos. Y sobre las necesidades de la industria agroalimentaria nos pone al día David Martín, director de Producto de Mettler Toledo: “Las principales necesidades se centran en una mayor simplicidad en los análisis, pero a la vez con una mejora en la fiabilidad de los mismos. Por otro lado, se requiere una seguridad tanto para el usuario (tratando de minimizar la exposición a reactivos químicos) como de la reproducibilidad de los resultados obtenidos. Además se demanda una mayor productividad lo cuál se traduce en una mayor automatización. Otra necesidad se centraría en la mejora en los procesos de gestión de datos y en una clara apuesta por los soportes digitales, y por lo tanto conectar los distintos instrumentos a PC o a redes. Y lógicamente las normativas, junto con los requerimientos de calidad y productividad, son la fuerza conductora de los avances presentes y futuros”.
Por su parte, Javier Ignacio Jáuregui, director del área de Servicios Analíticos del Centro Nacional de Tecnología y Seguridad Alimentaria nos explica que, si bien no se han producido cambios drásticos o grandes revoluciones en materia de control analítico, sí se observan algunas tendencias significativas en los últimos años que marcarán lo que ha de ser el futuro de las técnicas y la industria suministradora al laboratorio. En este sentido Jáuregui comenta que “se está imponiendo la cromatografía como método analítico en detrimento técnicas de valoración tradicionales como las basadas en la química, caracterizadas por ser más manuales”. Los laboratorios incorporan nuevos equipos, cada vez más sofisticados, como los sistemas de cromatografía líquida, que permiten acortar el tiempo en la generación de resultados, además de poder procesar un mayor número de muestras con un mismo equipo.
Por lo que respecta a las tendencias en instrumentación, la investigación se focaliza en dotar al mercado de equipos que permitan bajar los niveles de detección. Técnicas cada vez más rápidas que permiten conocer los resultados en tiempo real, la automatización del sector y la especialización del personal de laboratorio, la importancia del equipamiento informático y la progresiva implantación de sistemas de calidad (ISO 17025), constituyen las tendencias más significativas del sector.
Valoradores automáticos: Índice de acidez de zumos, aceites, refrescos, etc.; contenido de sal (cloruros): patatas fritas, salsas, agua, etc.; determinación del contenido de vitamina C; y medición de pH.
Analizadores de humedad: Determinación del contenido de humedad, es decir agua más compuestos volátiles. Tipos de muestras: frutos secos, harinas, productos de cacao, cafés, etc.
Karl Fischer: Determinación del contenido de agua con múltiples aplicaciones en el sector agroalimentario: chocolate, aceites, margarinas, preparados de comida…
Refractómetros y densímetros: Estos equipos de sobremesa permiten determinar las características finales de los productos líquidos y/o chequear la pureza. Por ejemplo en batidos de chocolate, aceites, miel, refrescos…
Medidores Brix: Se trata de medidores portátiles que permiten determinar el contenido de azúcar. Aplicaciones: zumos de frutas, producción de bebidas…
Seguridad y calidad
Así, existe el riesgo, por una parte, de contaminación microbiológica, que implica una contaminación inmediata y, por otra parte, de contaminación química, que es una contaminación a largo plazo, derivada del consumo crónico; este sería el caso de metales pesados en los alimentos, productos plaguicidas o, en el sector cárnico, las hormonas o los antibióticos.
Las empresas productoras de alimentos están obligadas a garantizar que sus productos cumplen con la normativa para ser considerados seguros y para ello llevan a cabo verificaciones a lo largo de todo el proceso.
Tal como nos cuenta Vima Delgado, responsable técnica de Anorsa, “el grueso de todo laboratorio de alimentación es la microbiología”. “En la elaboración de un alimento -prosigue Delgado- se pueden identificar una serie de pasos en los que puede producirse la contaminación del alimento por microorganismos o en los que los microorganismos ya presentes en el alimento pueden multiplicarse con mayor facilidad. Estos pasos del proceso se denominan puntos críticos y sobre ellos hay que actuar a la hora de mejorar las características microbiológicas del alimento en cuestión. Puesto que el control microbiológico es un proceso analítico es necesario seguir una serie de criterios sobre la toma de muestras y el análisis microbiológico desde la materia prima hasta el producto final”. Esta trazabilidad resulta fundamental para la rápida localización de cualquier problema derivado de la ingesta de un producto; la verificación de estos sistemas es una de las tareas habituales de los laboratorios dedicados al sector industrial agroalimentario ya que, como comenta Jáuregui “un problema de seguridad alimentaria tiene una repercusión muy negativa para el fabricante; destruye la marca. La empresa debe equilibrar los mínimos exigibles a que obliga la ley y ver qué costes puede soportar dentro de su estrategia comercial.” Jáuregui alerta acerca del peligro que supone la situación de crisis económica en la que nos hallamos, “que puede inducir -advierte- a que se descuiden los mecanismos de control de calidad con el objeto de ahorrar costes, lo que supone un riesgo…” Ante este panorama la industria alimentaria debe ser rigurosa en los controles de la materia que recibe de sus proveedores “y -apunta Jáuregui- la Administración debe aplicarse en la verificación de tales mecanismos”.
Además de la cuestión de la seguridad, el sector agroalimentario tiene necesidades de medición y control de parámetros relacionados con la adaptación de la oferta alimentaria a las nuevas exigencias del consumidor así como a la globalización de los mercados. En este sentido, los laboratorios al servicio de esta industria desarrollan modelos de predicción de vida útil basados en parámetros microbiológicos, químicos y sensoriales, modelos que satisfacen una demanda cada vez más numerosa por parte de la industria de estudios de vida útil de distintos alimentos. Este desarrollo se centra en la aplicación de modelos matemáticos a las cinéticas de crecimiento microbiano y de degradación de diversos componentes de los alimentos durante su procesamiento y/o conservación a partir de modelos de laboratorio, permitiendo conocer y controlar factores extrínsecos que afectan a los mismos.
Otro campo de acción del laboratorio alimentario es el desarrollo de técnicas y parámetros instrumentales de caracterización organoléptica de alimentos.
En la popular serie CSI las pruebas de laboratorio son determinantes para la resolución de los casos.
En numerosas ocasiones vemos a los agentes utilizando técnicas cromatográficas. Fotos, cortesía de Tele 5.
Cromatografía líquida ¿qué es?
Nuevas exigencias implican nuevos desarrollos: nuevas químicas, nuevos instrumentos, nuevos métodos. Entre ellos, la cromatografía líquida y más concretamente la UPLC, que en los últimos años “se ha convertido -declaran desde Waters Cromatografía- en una herramienta imprescindible en los análisis tanto medioambientales como de alimentos.” Sobre esta técnica, asociada a la espectrometría de masas, la compañía explica que “una adecuada preparación de las muestras y herramientas de software, permiten hacer análisis de control de calidad seguros y fiables, así como cumplir con las demandas de productos prohibidos o sometidos a MRLs, o hacer controles de origen, posibles adulteraciones o fraudes.”
La cromatografía líquida, o de líquidos, es una técnica de separación. Se trata de una técnica analítica ampliamente utilizada, que permite separar físicamente los distintos componentes de una solución por la absorción selectiva de los constituyentes de una mezcla. En toda cromatografía existe un contacto entre dos fases, una fija que suele llamarse fase estacionaria, y una móvil (fase móvil) que fluye permanente durante el análisis, y que en este caso es un líquido o mezcla de varios líquidos. La fase estacionaria por su parte puede ser alúmina, sílice o resinas de intercambio iónico. Los intercambiadores iónicos son matrices sólidas que contienen sitios activos (también llamados grupos ionogénicos) con carga electrostática (positiva o negativa). De esta forma, la muestra queda retenida sobre el soporte sólido por afinidad electrostática. Dependiendo de la relación carga/tamaño unos constituyentes de la mezcla serán retenidos con mayor fuerza sobre el soporte sólido que otros, lo que provocará su separación. Las sustancias que permanecen libres más tiempo en la fase móvil, avanzan más rápidamente con el fluir de la misma y las que quedan más unidas a la fase estacionaria o retenidas avanzan menos y por tanto tardarán más en salir o fluir.
El día a día en el laboratorio: adiós a la rutina
Otra tendencia significativa es la presencia cada vez más contundente de equipos informáticos, y es que los equipos para las comunicaciones, así como los softwares especializados, constituyen hoy una herramienta imprescindible en el día a día del laboratorio.
Por otra parte, la progresiva implantación de sistemas de calidad acreditados, como la ISO 17025, obligan a la dotación de un control automatizado que permite detectar si hay algún problema en las tecnologías utilizadas.
En materia de equipos la investigación se centra en bajar los niveles de detección, pues las normativas son cada vez más restrictivas y exigen bajar cada vez más los límites de cuantificación de sustancias nocivas, sobre todo en aguas, ya que por su alto consumo, en relación con otros productos, los límites máximos permitidos para determinadas sustancias son inferiores a los fijados para otros alimentos.”
Biotecnología y alimentos genéticamente modificados
Estos métodos, como tantas otras novedades científicas, suscitan el debate social y mucha tinta queda por verter al respecto. Sobre este asunto, he aquí la opinión de Vima Delgado, bióloga y responsable del departamento Técnico y Marketing de Anorsa: "Probablemente se trata de uno de los temas más controvertidos en la actualidad, por los altos márgenes de inseguridad y la falta de conocimientos sólidos, pero el uso de OGMs por ejemplo para la producción de alimentos puede ayudar a mejorar las prácticas agrícolas, la calidad alimentaria, la nutrición y la salud. En el futuro también será posible aumentar el valor nutricional de las cosechas mejorando características funcionales deseables, como reducir la toxicidad o alergenicidad, alterar el contenido en grasas o proteínas o aumentar la cantidad de nutrientes y otros compuestos fitoquímicos. Esta nuevas tecnologías pueden contribuir a paliar los problemas de malnutrición en el mundo, como las carencias de vitamina A, yodo o zinc. Resaltar que la introducción de alimentos transgénicos en el mercado europeo está estrictamente regulada y está sujeta a los resultados de una evaluación extensiva de seguridad alimentaria”.
El reto de hallar lo desconocido
Se trata de una muestra de los desarrollos en los que Itene trabaja de forma pionera en nuestro país con muy buenos resultados en barrera de oxigeno y resistencia, igualable a los materiales plásticos dependientes del petróleo.
Según los responsables “los nuevos materiales diseñados, utilizando arcillas minerales como refuerzo, consiguen mejorar la rigidez, la estabilidad térmica, las propiedades barreras, así como las propiedades conductoras y la resistencia al fuego del producto final sin detrimento en la transparencia o la densidad del material“.
En cualquier caso, en la actualidad, tal como nos comenta Juan Luis Mejías, responsable del Área de Alimenta-ción de Abelló Linde, “en cuanto a la cuestión de la migración de sustancias del envase al alimento, el tema se encuentra totalmente legislado en el Reglamento (CE) Nº 1935/2004 (13/11/2004) sobre los materiales destinados a entrar en contacto con alimentos”.
Aditivos alimentarios: ¿cómo se evalúa la seguridad?
Sus valoraciones se basan en la revisión de todos los datos toxicológicos disponibles, incluidos los resultados de las pruebas efectuadas en humanos y animales. A partir del análisis de los datos de los que disponen, se determina un nivel dietético máximo del aditivo, que no tenga efectos tóxicos demostrables. Dicho contenido es denominado el “nivel sin efecto adverso observado” (no-observed-adverse-effect level o NOAEL) y se emplea para determinar la cantidad de “ingesta diaria admisible” (IDA) para cada aditivo. La IDA, que se calcula con un amplio margen de seguridad, es la cantidad de un aditivo alimentario que puede ser consumida en la dieta diariamente, durante toda la vida, sin que represente un riesgo para la salud.
El SCF aboga por que se añadan a los alimentos los niveles más bajos posibles de aditivos. Para asegurarse de que las personas no consuman una cantidad excesiva de productos que contengan un determinado aditivo, que les lleve a sobrepasar los límites de la IDA, la legislación europea exige que se realicen estudios de los niveles de ingesta en la población, para responder a cualquier variación que se presente en los modelos de consumo.
A nivel mundial, la Comisión del Codex Alimentarius, una organización conjunta de la FAO y la OMS, que se encarga de desarrollar normas internacionales sobre seguridad alimentaria, está preparando actualmente una nueva Normativa General sobre los Aditivos Alimentarios con el propósito de establecer unas normas internacionales armonizadas, factibles e incuestionables para su comercio en todo el mundo. Sólo se incluyen los aditivos que han sido evaluados por el Comité Conjunto FAO/OMS de Expertos en Aditivos Alimentarios.
Los envases activos antimicrobianos son aquellos que incorporan como agente antimicrobiano carvacrol, que es el principio activo del extracto de orégano. Este extracto natural incorporado en el material de envase evita el crecimiento microbiológico de microorganismos, mohos y levaduras.