Actualidad Info Actualidad

Robots, pinzas de palas y garras de vacío

Cómo reducir el consumo energético en sistemas de paletizado robotizados

Cada día es más patente que la pandemia no solo ha dejado una secuela sanitaria a escala mundial, sino que además ha repercutido gravemente en el sector industrial. La falta de materiales y su consecutiva escasez e inflación de precios ha arrasado con todos (distribuidores, fabricantes y clientes finales) y nos ha arrastrado a un panorama incierto en el tablero, donde el mercado cada día se asemeja más a un circo acrobático, dejando atrás los competitivos días de un espacio estructurado. Por si fuera poco, a este impacto económico se suma la también preocupante subida de precios de la luz. Para muchos está siendo una total pesadilla, de modo que hasta que los precios se estabilicen, hay que buscar soluciones que ayuden a mejorar no solamente nuestra situación actual, sino futura, con pequeñas, pero significativas mejoras en nuestro entorno más cercano.
Robots de paletizado de Kawasaki
Robots de paletizado de Kawasaki.

Por ello, cada vez es más habitual encontrar en empresas la instalación de robots industriales en los procesos de paletizado de fin de línea. Habitualmente, manipulan las piezas con pinzas de palas o por medio de garras/pinzas de vacío.

Estas instalaciones demandan mucha energía debido a su frecuencia de trabajo que además, puede llegar a ser muy alta. Una instalación de paletizado puede mover por hora miles de piezas y cada movimiento conlleva a un gasto energético que no se puede evitar pero si reducir.

Los robots Kawasaki de la serie CP, específicos para paletizado, son capaces de realizar hasta 2.050 ciclos a la hora de tipo estándar con una tecnología propia que ahorra energía en cada ciclo de la forma más eficiente.

A continuación, se desglosa este caso para entenderlo mejor, empezando por lo que es un ciclo estándar:

Ciclo estándar
Ciclo estándar.

En cada posición extrema actuará la pinza, donde si es de palas realizará 4.100 operaciones de apertura y cierre o en las garras de vacío realizará 2.050 establecimientos de vacío que hay que mantener durante la mitad de cada ciclo.

De este modo, se encuentran los siguientes consumidores de energía:

  • El robot, donde principalmente se hallan sus motores constantemente acelerando y decelerando. Por regla general, el máximo consumo para todos los robots se produce precisamente al acelerar y al decelerar, siendo habitual que la energía de deceleración se disipe en resistencias de frenado, como si fuese una estufa donde en los días de verano nos va ablogar a gastar más en aire acondicionado.
  • La pinza de palas. De forma habitual realizada en base a actuadores neumáticos y dimensionada su carrera para la pieza de más tamaño que no tiene porque ser la más frecuente. Este desplazamiento lineal implica un alto consumo de aire propio del actuador, más las pérdidas habituales asociadas a los sistemas neumáticos.
  • La garra de vacío, en la que los litros por minuto de aire que se consumen son muy importantes y proporcionales a las dimensiones y carga a elevar por esta técnica.

De modo que, si se trabajan cada uno de estos consumidores de energía se observa que:

El robot

  • Debe ser un brazo suficientemente ligero para que no estar consumiendo energía al moverlo y, lo que es más importante, al acelerarlo. Por ello, un brazo de 4 ejes es lo adecuado por pesar menos que su equivalente con 6 ejes.
  • La electrónica de control debe de ser de última generación, ya que su eficiencia es mucho mayor.
  • Disipar la energía de frenado en una resistencia supone un gasto tremendo, lo adecuado es convertir esa energía de frenado en electricidad y devolverla al sistema.
  • Las anteriores condiciones las cumplen los robots Kawasaki de paletizado, que incluyen frenado regenerativo con devolución de energía, consiguen ahorros en electricidad de entre un 20-30% respecto a robots que disipan su energía de frenado en calor.
Función de regeneración de la electricidad
Función de regeneración de la electricidad.

La pinza de palas

  • La neumática para movimientos largos o repetitivos es poco eficiente e imprecisa. Aunque la pala no esté trabajando existe un consumo residual constante debido a que necesario mantener en marcha los compresores y existen pérdidas en el transporte del aire comprimido.
  • Un sistema basado en ejes eléctricos programables optimiza la distancia recorrida según la pieza reduciendo ciclos y consumiendo menos de un 80% respecto a un sistema neumático. La reducción de los tiempos en la pinza permite que el robot pueda acelerar con mayor suavidad reduciendo a su vez el consumo eléctrico por ese motivo.
  • La gestión de fuerza integrada de los actuadores eléctricos permite tratar las cajas u objetos a manipular sin dañarlos al ajustar la energía que se aplica a su justo valor.
  • Los sistemas eléctricos no consumen energía si no están activos. Algunos fabricantes como IAI automáticamente entran en modo latente si la solicitación es nula, reduciendo casi a cero el consumo energético de los controladores.
  • Larraioz Elektronika dispone de una amplia gama de soluciones eléctricas eficientes para fabricación de pinza de palas de la mano de IAI y LinMot, de sencilla utilización que se integran directamente con el controlador del robot.

La garra de vacío

  • Se pueden explorar otras alternativas, pero el vacio sigue siendo una tecnología muy válida en gran número de ocasiones.
  • Para evitar las pérdidas de transporte del aire comprimido y mejorar el rendimiento se pueden instalar generadores de vacio exclusivos para el robot, que estén apagados cuando el robot no requiere de su servicio.

Por lo tanto, si lo que se está buscando es cualquier característica que permita una reducción de energía, el controlador universal E03 ha sido diseñado específicamente para las aplicaciones de paletizado donde se carga en un punto, se eleva a una altura segura y se descarga en el palé. Entre otras ventajas, el E03 recupera la energía de las frenadas en lugar de desperdiciarla en resistencias de frenado.

La serie CP de Kawasaki Robotics puede simplificar los diseños de final de línea y ahorrar energía.

Comentarios al artículo/noticia

Deja un comentario

Para poder hacer comentarios y participar en el debate debes identificarte o registrarte en nuestra web.

Suscríbase a nuestra Newsletter - Ver ejemplo

Contraseña

Marcar todos

Autorizo el envío de newsletters y avisos informativos personalizados de interempresas.net

Autorizo el envío de comunicaciones de terceros vía interempresas.net

He leído y acepto el Aviso Legal y la Política de Protección de Datos

Responsable: Interempresas Media, S.L.U. Finalidades: Suscripción a nuestra(s) newsletter(s). Gestión de cuenta de usuario. Envío de emails relacionados con la misma o relativos a intereses similares o asociados.Conservación: mientras dure la relación con Ud., o mientras sea necesario para llevar a cabo las finalidades especificadasCesión: Los datos pueden cederse a otras empresas del grupo por motivos de gestión interna.Derechos: Acceso, rectificación, oposición, supresión, portabilidad, limitación del tratatamiento y decisiones automatizadas: contacte con nuestro DPD. Si considera que el tratamiento no se ajusta a la normativa vigente, puede presentar reclamación ante la AEPD. Más información: Política de Protección de Datos

REVISTAS

TOP PRODUCTS

NEWSLETTERS

  • Newsletter Automatización y Componentes

    18/12/2024

  • Newsletter Automatización y Componentes

    11/12/2024

ENLACES DESTACADOS

Advanced Factories

ÚLTIMAS NOTICIAS

EMPRESAS DESTACADAS

OPINIÓN

ENTIDADES COLABORADORAS

OTRAS SECCIONES

SERVICIOS