Soluciones para el reciclaje de composites y plásticos complejos
Eva Verdejo, investigadora líder en Reciclado y Biotecnología. Aimplas, Instituto Tecnológico del Plástico
25/03/2024El reciclado de estos materiales aúna procesos mecánicos, físicos, químicos (solvólisis y termólisis) y biológicos, que deben trabajarse de forma complementaria y en muchos de los casos en forma de cascada, para obtener resultados óptimos que supongan una viabilidad técnica, ambiental y económica.
En este marco se ha desarrollado el proyecto OSIRIS “Cooperación estratégica en tecnologías para la economía circular de composites y materiales plásticos complejos de alto valor añadido”. Este proyecto, está enmarcado en el Programa Estatal de Generación del Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i del Plan Estatal de Investigación Científica y Técnica y de Innovación. OSIRIS ha sido desarrollado desde enero de 2021 a marzo de 2024 por los Centros Tecnológicos de Excelencia Cervera 2020 en tecnologías de economía circular: Aimplas, Aitex, Cidaut y Gaiker.
Este proyecto tenía como visión ser referente nacional e internacional en el desarrollo de tecnologías de reciclado de materiales compuestos y mezclas de plásticos complejos y en la reformulación de productos de alto valor añadido, a partir de materiales reciclados procedentes de composites, actuando a su vez como elemento tractor en el conjunto del Sistema Español de Ciencia, Tecnología e Innovación y con una clara vocación de difundir y promocionar los resultados obtenidos, siempre con orientación a mercado.
En el caso del PUR, los resultados son similares, obteniéndose halos de degradación como se muestra en la siguiente imagen.
Los microorganismos, aislados e identificados relacionados con la degradación del poliuretano, fueron: Nocardiopsis yanglinesis, Aspergillus fumigatus y Burkholderia anthina. Estos microorganismos tienen actividad enzimática, liberando enzimas extracelulares hidrolíticas capaces de escindir polímeros, así como sustancias derivadas de hidrocarburos. De igual forma, extendiendo el concepto de degradación biológica para el reciclado enzimático de polímeros, se aisló e identificó el Bacillus Licheniformis strain Ali5 como cepa degradadora del polietileno de baja densidad (LDPE). Estos resultados son muy prometedores, y demuestran que el reciclado mediante biotecnología de polímeros no biodegradables es posible. Los tiempos son largos, sin embargo, su impacto ambiental, respecto al bajo coste energético o al bajo empleo de sustancias y productos químicos, lo hace atractivo frente a procesos convencionales. Todavía tiene un gran recorrido, tanto de investigación, como de incorporación al mercado, que puede cobrar una gran importancia para recubrimientos y separación de residuos plásticos complejos, mediante tecnologías más limpias.
Otra de las investigaciones realizadas por el Instituto Tecnológico del Plástico, Aimplas,, ha sido el avance hacia procesos de reciclaje químico y termoquímico de composites de resinas de poliéster y epoxi con fibras de vidrio y carbono. En estos procesos de solvólisis y pirólisis, principalmente el mayor coste va relacionado con las temperaturas elevadas y los amplios tiempos de proceso. En este sentido, se evaluaron procesos complementarios, tanto usando catalizadores como induciendo el proceso de solvólisis o de pirólisis mediante microondas.
En el caso de procesos de solvólisis, se analizaron para el reciclado de composites diferentes parámetros como disolvente, co-disolvente, temperatura, catalizador y tiempo de reacción. La parte polimérica, correspondiente a la resina se degrada mediante ruptura selectiva de determinados enlaces para la obtención de monómeros y oligómeros. La parte de la fibra se separa de la reacción mediante filtrado y posterior lavado, que permite además separar los catalizadores empleados para su posterior reutilización. El equipamiento empleado son reactores, de baja o alta presión dependiendo de las condiciones, como el que se muestra en la siguiente imagen.
La pirólisis catalizada había sido ampliamente estudiada para el caso de biomasa y poliolefinas, pero no para composites. Se analizaron catalizadores como aluminosilicatos y en concreto zeolitas, caracterizados por tener estructuras cristalinas específicas y con una actividad que depende, además de otros factores, de la acidez, la superficie específica y el tamaño de poro. La introducción de zeolitas reduce los tiempos de pirólisis, aunque requiere una etapa de tamizado y calcinación que permite separar el catalizador sólido y a la vez recuperar las fibras, eliminando los restos de carbón de la fase sólida. Este tamizado puede ser escalado mediante una etapa de elutrización por aire.
En la imagen, a la derecha, se muestra la planta piloto de pirólisis y a la izquierda la planta de elutrización por aire o zigzag de Aimplas,.
Estas son algunas de las investigaciones realizadas que demuestran el importante campo del reciclado de composites y plásticos complejos y las grandes posibilidades que presentan, así como la necesidad de seguir investigando para realmente alcanzar una economía circular.