La inteligencia artificial llega a las comunidades de regantes
Emilio Camacho, Juan Antonio Rodríguez, Pilar Montesinos y Rafael González, investigadores del Departamento de Agronomía de la Universidad de Córdoba.
Desarrollar un modelo capaz de predecir con antelación el agua que demandará diariamente cada regante. Es el reto asumido por Rafael González, investigador del Departamento de Agronomía de la Universidad de Córdoba, que ha desarrollado una herramienta con vocación de aliada de la sostenibilidad de los recursos hídricos.
El modelo FIS aplica técnicas de inteligencia artificial, como la lógica difusa, un sistema usado para explicar el comportamiento de toma de decisiones que, en este caso, mezcla variables más fáciles de medir como las agroclimáticas o el tamaño de la parcela de riego; con otras variables más complicadas como las prácticas tradicionales de la zona o las vacaciones durante la estación de riego.
Esta herramienta trata de poner freno a la variabilidad de la demanda de agua. De esta manera, las comunidades de regantes podrán hacer una planificación más organizada y veraz de sus suministros, anteponerse a los problemas de adecuación de las estaciones de bombeo y organizar eficientemente las tareas de mantenimiento y arreglo de averías sin derrochar agua ni afectar a las zonas de regadío.
La posibilidad de adelantarse a las peticiones de agua permite también contratar el personal y la energía eléctrica que sean estrictamente necesarios, optimizando también estos recursos y ahorrando en costes económicos y medioambientales.
Obtención de datos
La creación de esta herramienta se traduce en un cambio en la gestión tradicional de las comunidades de regantes, basada en el conocimiento y en la información, alejada de la intuición o de lo realizado en años precedentes.
Pero, ¿de dónde se extrae toda esta información? En este caso, para determinar cómo el manejo diferente de cada cultivo puede influir en la exactitud del modelo, Rafael González ha utilizado los datos de las instalaciones de telecontrol de la comunidad de regantes del Canal del Zújar para los cultivos de maíz, arroz y tomate. De esta forma, la aplicabilidad de los sistemas de telecontrol y telemetría queda patente.
Mientras que, hasta ahora, los datos generados por esos sistemas se utilizaban básicamente para facturar los caudales consumidos por cada usuario de la red, con este sistema se utilizan todas las mediciones generadas para obtener las predicciones. Por tanto, el modelo ideado por González revaloriza los sistemas de medidas instalados en las comunidades de regantes, satisfaciendo tanto al personal técnico y de gerencia de las comunidades como a las empresas que innovan en el campo de la telemedida. Todo ello sin olvidar la labor de conservación del agua a nivel global.
González Perea, R, Camacho Poyato, E., Montesinos, P., Rodríguez-Díaz, J.A., (2018) Prediction of applied irrigation depths at farm level using artificial intelligence techniques. Agricultural Water Management, 206, pp 229-240. https://doi.org/10.1016/j.agwat.2018.05.019