TÉCNICA Y TECNOLOGÍA 87

DIGITALIZACIÓN 31 Sin embargo, antes de implementar este tipo de solución, es vital entender que el sistema de IA no es capaz de ‘inventar’ situaciones que no ha conocido, sino más bien es capaz de aprender de los datos de situaciones que ya han ocurrido. Esto es especialmente significativo cuando se quiere realizar una simulación de cómo reaccionaría la máquina ante una configuración ‘extrema’. Si los datos que se utilizan para entrenar el modelo de IA no incluyen ninguna situación con valores de entrada anormales, el modelo será capaz de seguir la tendencia existente en los valores previos, pero la fiabilidad de los resultados que ofrezca en estos puntos será muy baja. Se indican a continuación dos posibles soluciones a este problema: • Experimentación. Una posibilidad para obtener simulación fiable con cualquier valor de entrada es realizar experimentos con la máquina cuando no está en producción. En este caso se forzarían los valores extremos para incluirlos en el conjunto de datos del entrenamiento. Esta solución conlleva varios riesgos y problemas. Detener una máquina durante mucho tiempo para este fin implica una reducción en la capacidad productiva de la empresa. Además, forzar valores extremos puede llevar a una rotura o desencadenar un mal funcionamiento, implicando un perjuicio sustancial en la facturación. • Modelo de fabricante. Otra posibilidad es que el entrenamiento del modelo no se realice en fábrica, sino que sea proporcionado directamente por el fabricante y se incluya en el gemelo digital del cliente. Esta solución es posible porque para el fabricante implica un valor añadido al producto y no le resulta tan punitivo como al cliente realizar experimentos con el sistema. Por contrapartida, se está utilizando el mismo modelo para todas las máquinas sin, quizás, tener en cuenta algunas características particulares de cada instalación, lo que supondría una pérdida de precisión. De esta manera, un gemelo digital con un modo de simulación correctamente configurado permite entender de manera minuciosa el funcionamiento de la máquina y optimizar la producción a niveles límite, sin arriesgar en el proceso la costosa maquinaria ni el proceso de producción en sí mismo. Sensores virtuales Otro aporte importante de la IA discriminativa a los gemelos digitales son los llamados sensores virtuales, que permiten al gemelo recabar información de magnitudes muy difíciles de medir de manera continua sin el uso de modelos discriminativos. Supóngase algunamagnitud quemanifieste una complicación enorme para medirse con sensores tradicionales. Pueden existir diversas razones, por ejemplo, que el sensor deba colocarse en un entorno de atmósfera explosiva (ATEX). Un sensor certificado para entorno ATEX puede suponer fácilmente un incremento de 10 o 15 veces el precio de un sensor normal. Otro ejemplo pueden ser variables que son muy difíciles de medir en continuo por la propia naturaleza de la magnitud, como por ejemplo la viscosidad de la pintura. En este caso, los sensores virtuales son una solución para incorporar en el modelo una medida continua de esta magnitud. El objetivo de un sensor virtual es estimar con precisión el valor de una magnitud difícil de medir partiendo de varias magnitudes más fáciles de medir que tengan una correlación con la magnitud original. Desarrollando el ejemplo antes presentado, la viscosidad de la pintura dependerá del tipo de pintura que se ha utilizado, de la cantidad de mezcla que se eche, de la humedad ambiente, de la temperatura ambiente, de la temperatura de la herramienta, de Ilustración 5. Diagrama de etapas de la creación de un sensor virtual. Fuente: Elaboración propia.

RkJQdWJsaXNoZXIy Njg1MjYx