Técnica y Tecnología 85

FABRICACIÓN DE HERRAMIENTAS 6 La propia micro-geometría del filo de corte es una de las claves para obtener la tan ansiada mejoría de rendimiento EL PODER DEL FILO Desde los inicios del mecanizado, los fabricantes de herramientas han puesto el foco de su investigación en mejorar el rendimiento de los productos que ofrecen. Por mucho tiempo esa búsqueda se limitaba a encontrar el material más duro que pudiera soportar los diversos esfuerzos (grandes, intermitentes, continuos, vibratorios, etc.) térmico-mecánicos que se dan durante el proceso de corte. Años después, el objetivo de estudio cambió y se centró en los recubrimientos (materiales a utilizar, tecnología PVD, tecnología CVD, recubrimientos multicapa, recubrimientos nanocapa, etc). P. Fernández-Lucio y G. Urbikain, del Dpto de Ing. Mecánica. Universidad del País Vasco (UPV/EHU); O. Pereira, A. Fernández-Valdivielso y L. N. López de Lacalle; del Centro de Fabricación Avanzada de Aeronáutica (CFAA); e I. Azkona, de Metal Estalki, S.L. En los últimos años, los fabricantes de herramientas han encontrado en la propia micro-geometría del filo de corte otra clave para obtener la tan ansiada mejoría de rendimiento. Esta mejoría se da tanto en cuestiones de aumento de vida útil de herramienta, como en mejorías del acabado superficial de los componentes mecanizados. De esta forma se consigue aumentar la productividad de los procesos de corte por arranque de viruta. El primer paso para estudiar la influencia del filo de corte durante el mecanizado es encontrar una forma para definir las diferentes formas posibles que puede tener. Buscando en la literatura, los investigadores proponen diferentes formas para definirlo. En la figura 1 se pueden ver algunos de los modelos propuestos por los investigadores. A pesar de todos los modelos que hay, en la gran mayoría de los estudios realizados que se pueden encontrar en la literatura se usan tres opciones: el propuesto por Denkena et al. (2005) [1]; lo aproximan a un radio equivalente; o una mezcla de los dos anteriores, es decir, obtienen un radio equivalente e indican si tiende hacia la cara de desprendimiento (K>1) o tiende a la cara de incidencia (K<1). Muchos de los sistemas de medición de radios de filo, como el microscopio Alicona Infinite Focus G5, dan el radio aproximado además de los parámetros definidos en el estudio de Denkena et al. (2005) [1]. Por ello, este último es el sistema adoptado en este trabajo. Una vez definido el filo, si se quiere modificar la geometría de los mismos es necesario tener una forma de hacerlo. En el mercado se pueden encontrar múltiples tecnologías para ello. Sin embargo, en la industria hay una preferencia por tres de ellos: la tecnología de Drag-Finishing, la de Abrasive Jet machining y el Brushing [5]. En el estudio realizado por Straka y Vopat (2022) se analizó la influencia de estos tres procesos de generación de radios de filo en la vida útil de la herramienta, obteniéndose como conclusión que el proceso que logra obtener mayor duración de vida de la herramienta con un radio de filo de 35 μm es el Drag-Finishing [5]. Las ventajas de aumentar el radio de filo sonmúltiples. Sin embargo, hay que tener cuidado a la hora de decidir hasta qué radio aumentarlo debido a que, a partir de cierto punto, esas ventajas desaparecen y se puede empeorar el proceso de corte tal y como Schiffler et al (2020) demostraron en su investigación [6]. Además, un mayor radio de filo mejora la generación de calor debido a la mayor deformación plástica y a la fricción, pero mayor radio equivale a una mayor profundidad del efecto ploughing y, con ello, puede obtenerse un peor acabado superficial por el acumulamiento de material si ese radio es muy grande [7].

RkJQdWJsaXNoZXIy Njg1MjYx