NUEVOS MATERIALES 19 nes 7 x 7 x 5 mm con PBF-EB (figura 3a). El volumen tridimensional de las muestras obtenido a través de una tomografía computerizada se representa en la figura 3b. Puede observarse que se consiguieron con éxito unos valores de densidad superiores al 99,99 % y un porcentaje de porosidadmenor que 0,01 %. Solo se detectaronpequeños poros esféricos con un volumen de 0,0030 mm3 aproximadamente (las marcas azules en la figura 3b). No obstante, pueden considerarse aceptables y atribuirse a un defecto del polvo. Esto está acorde a la imagen de densificación metalográfica mostrada en la figura 3c. La figura 3d expone lamicroestructura, destacando colonias homogéneas de fases α2+γ. Las lamelas oscuras corresponden a la fase α2 que pueden verse claramente en la zona con una mayor ampliación. No se muestra ningún fenómeno de crecimiento columnar ni en la dirección de fabricación, ni en la dirección de fusión que coincide con aquello presentado en un trabajo anterior [5]. Por ello, se han conseguido muestras de PBF-EB sin formación de grietas. La composición química de las muestras se analizó y comparó con la composición química del polvo de partida incluido en lamáquina PBF-EB, con una atención especial en el contenido de aluminio, debido a su baja densidad y, con ello, una fácil volatilización. Un valor medio de 35% de Al se obtuvo en una muestra procesada de PBF-EB. Este es un valor previsible según los resultados mostrados en la tabla 1 y también se corresponde con aquellos presentados en [6], lo que deriva en un valor aceptable de volatilización de Al. Las medidas de la dureza Vickers dieron lugar a valores medios de 3 GPa. Se detectaron valores de dureza ligeramente mayores, de 4 GPa para las medidas de microhendidura en [6]. Estos valores muestran una buena concordancia con la hipótesis de que, a mayor carga, menor dureza. CONCLUSIONES La aleación de polvo gamma-Ti48Al2Cr2Nb se ha caracterizado para confirmar su idoneidad para ser procesada con tecnologías de fabricación aditiva. Se ha demostrado que la aleación de polvo suministrada presenta un comportamiento físico correcto para su procesado en fabricación aditiva, de acuerdo con la fluidez y las características de densidad aparentes. Los valores obtenidos concuerdan con las características del polvo suministrado por ARCAM (el proveedor de la tecnología PBF-EB): una fluidez menor que 30s/50g y una densidad aparente mayor que 50% respecto al material sólido. Además, la microestructura y la morfología de las partículas del polvo indican que los granos de dendrita se formaron en la dirección de solidificación y no se observan evidencias de segregación de elementos ni de contaminación superficial. Aunque algunas de las partículas de polvo presentaban una morfología irregular, la mayoría de ellas mostraba una forma esférica y la presencia de algunos satélites que no afectan a la fluidez del polvo. Se ha diseñado e implementado un nuevo hardware para el sistema PBF-EB para esta investigación de TiAl que permite la optimización de la cantidad del polvo gamma-Ti48Al2Cr2Nb necesario para la producción PBF-EB, derivando el polvo al área de construcción. El sistema diseñado ha permitido la reducción del área de construcción un 84 % respecto al sistema PBF-EB estándar. Se ha procesado con éxito la aleación gamma-Ti48Al2Cr2Nb con la tecnología PBF-EB adaptada que se ha desarrollado para trabajar con menos cantidad de polvo de una forma económica. Se han conseguido pequeñas piezas de gamma-Ti48Al2Cr2Nb con densidad completa, sin defectos, una volatilización baja de Al y unos valores de dureza semejantes a los esperados. Se está estudiando el comportamiento mecánico para conseguir más conocimientos acerca de este material. n REFERENCIAS [1] J. Hernandez, L. E. Murr, S. M. Gaytan, E. Martinez, F. Medina, and R. B. Wicker, “Microstructures for Two-Phase Gamma Titanium Aluminide Fabricated by Electron Beam Melting, ” Met. Microstruct. Anal., vol. 1, pp. 14–27, 2012. [2] J. Gussone et al., “Microstructure stability of γ-TiAl produced by selective laser melting, ” Scr. Mater., vol. 130, pp. 110–113, 2017. [3] G. Baudana et al., “Electron Beam Melting of Ti-48Al-2Nb-0.7Cr0.3Si: Feasibility investigation, ” Intermetallics, vol. 73, pp. 43–49, 2016. [4] L. P. Griñán, R. J. Puchades Blasco, M. Martínez, and S. Sanjuán, “Pure Copper processed by Electron Beam Melting (EBM) technology for industrial applications, ” in Proceedings Euro PM 2018: International Powder Metallurgy Congress and Exhibition, 2018. [5] S. Biamino, B. Klöden, T. Weißgärber, B. Kieback, and U. Ackelid, “Titanium aluminides for automotive applications processed by electron beam melting, ” in World PM 2014 Congress and Exhibition, 2014, pp. 96–103. [6] L. E. Murr et al., “Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, ” Acta Mater., vol. 58, no. 5, pp. 1887–1894, 2010.
RkJQdWJsaXNoZXIy Njg1MjYx