CONVERTING 89 NORMATIVA Y OBJETIVOS DE RECICLABILIDAD PARA 2030 Además del sector alimentario, estas estructuras multicapa se utilizan ampliamente en la industria farmacéutica y cosmética, donde la conservación de los productos es vital para garantizar su eficacia. Sin embargo, estas estructuras plantean grandes desafíos en términos de reciclabilidad, principalmente debido a la complejidad de las estructuras2. Están formadas por varias capas de diferentes materiales, que cuando se combinan formando una estructura multicapa cumplen con los requerimientos del envase. Así, cada una de las capas tendría una funcionalidad, siendo normalmente la capa externa la capa estructural que aporta las propiedades mecánicas al embalaje, la capa intermedia la que le confiere la barrera a gases y la capa interna la que facilita el sellado térmico del envase para garantizar la hermeticidad y la estanqueidad del mismo. Esta diversidad de materiales crea problemas a la hora de separarlos adecuadamente en las plantas de reciclaje y si se procesan conjuntamente, eso daría lugar a un plástico reciclado de baja calidad que se utilizaría en aplicaciones de productos de menor valor añadido. Según el informe de Perspectivas Mundiales del Plástico de la OCDE3, en las últimas dos décadas la producción anual a nivel mundial de residuos plásticos se ha duplicado. Como los envases representan casi el 40% del peso total de esos residuos plásticos generados, el reciclaje de los envases alimentarios se ha convertido en una prioridad. Así, la Unión Europea, atendiendo a estos desafíos ambientales ha establecido objetivos claros para el año 2030. Según el Reglamento Europeo de Envases y Residuos de Envases aprobado este año 20244, todos los envases comercializados deberán ser reciclables al final de su vida útil. Estos objetivos ambiciosos han marcado los pasos de la industria, que se ha visto obligada a rediseñar muchas de sus soluciones de embalaje debido a la dificultad de reciclar los envases multicapa con las tecnologías actuales. Implementar herramientas de ecodiseño es crucial para conseguir envases más sostenibles ya que permiten a los fabricantes diseñar envases que no sólo cumplen una función técnica, sino que también son más fáciles de reciclar al final de su ciclo de vida5. Así, se considera el reciclaje en la etapa de diseño, garantizando que los materiales elegidos sean compatibles con los flujos de reciclaje existentes. Además, este reglamento fomentará el desarrollo de infraestructuras de reciclaje más sofisticadas que puedan gestionar eficazmente los envases multicapa. En varios países europeos ya se están llevando a cabo proyectos piloto para mejorar la detección y separación de materiales en plantas de tratamiento de residuos6. Sin embargo, estos procesos están en muchos casos en fase de investigación y aún queda mucho por hacer para lograr la reciclabilidad deseada. NUEVAS TENDENCIAS: ESTRUCTURAS MONOMATERIAL, RECUBRIMIENTOS Y ADHESIVOS 'DE-BONDING ON DEMAND' Una de las soluciones más prometedoras para abordar el problema de la reciclabilidad de los envases multicapa es la transición hacia estructuras monomaterial. A diferencia de los envases multicapa tradicionales, que utilizan distintos tipos de materiales, las estructuras multicapa monomaterial están compuestas por un único tipo de polímero, como puede ser el polietileno (PE) o el polipropileno (PP). Estas estructuras simplifican el proceso de reciclaje ya que eliminan la necesidad de separar materiales que son incompatibles. El polietileno y el polipropileno son los polímeros más utilizados para estas soluciones debido a su versatilidad, bajo coste y la infraestructura existente para su reciclaje. Se están desarrollando nuevas tecnologías que mejoran las propiedades de estos polímeros haciéndolos más adecuados para aplicaciones que tradicionalmente requerían estructuras más complejas. Así, la tecnología MDO ('machine-direction orientation' por sus siglas en inglés)7 que consiste en calentar el film a una temperatura ligeramente inferior a su punto de fusión y estirarlo en la dirección de máquina, permite mejorar tanto las propiedades barrera, como las propiedades mecánicas del film. Además, con esta tecnología también se consigue reducir el espesor del film de PE, lo que supone una reducción de peso en la estructura final. Por otro lado, el proceso de Biorientado u orientado biaxial8 donde se estira la lámina en un túnel térmico en la dirección de máquina y también en la transversal, permite también una orientación de las cadenas poliméricas suponiendo, al igual que en el caso del MDO, una mejora en las propiedades barrera y mecánicas, una mayor estabilidad dimensional y una reducción de peso al reducir el espesor de los films. Estas estructuras pueden cumplir con las mismas funciones que los envases multicapa tradicionales, como ofrecer barrera frente a gases y humedad y al mismo tiempo son más fáciles de gestionar al final de su vida útil. Muchas empresas están colaborando con proveedores y transformadores para rediseñar sus estructuras utilizando estas tecnologías y así poder eliminar materiales como el aluminio y la poliamida. Algunos ejemplos en Europa de empresas que están trabajando con estas soluciones monomateriales para sustituir a las estructuras multimaterial son Walki Plasbel9, Silvalac10, Mondi11, y Borealis12 entre otras. No obstante, alcanzar las propiedades de alta barrera que requieren algunos envases sólo por medio del uso de estas tecnologías es complicado, y en estos casos, la aplicación de recubrimientos
RkJQdWJsaXNoZXIy Njg1MjYx