52 I+D La máquina también genera mapas tridimensionales con la evolución de los datos de la ruta de deposición del material para su posterior análisis y correlación a través de la monitorización y registro durante el proceso de fabricación de la posición, los parámetros del proceso, la vibración del propio hilo metálico, la temperatura o la geometría de la pieza. Estas variables se procesan, sincronizan, fusionan y visualizan durante todo el proceso de fabricación. La medición y el control geométrico se realiza in situ para medir la geometría de la pieza fabricada a través de un escáner 3D basado en la proyección de luz estructurada integrado en la máquina. El mismo dispositivo se emplea para medir la altura de la pieza durante el proceso de fabricación con el fin de asegurar una fabricación capa a capa estable. Para ello, la máquina dispone de un control capaz de actuar sobre diferentes parámetros del proceso, como la velocidad de avance del cabezal para asegurar la estabilidad geométrica durante el proceso de fabricación, en función de la medida del escáner. REPARACIÓN Y PRODUCCIÓN EN 3D Entre las principales aplicaciones de Titan en fabricación industrial se encuentra por un lado la reparación de utillajes, moldes, matrices o engranajes, ya sea por errores producidos en procesos de fresado, por cambios en el diseño, por desgaste o por impactos durante la vida útil de estos componentes. En este sentido, la técnica DED puede ser una solución para otorgar a los equipos de un recubrimiento protector contra la corrosión por desgaste e incluso como barrera térmica. Por otro lado, la principal aplicación de la máquina de Tekniker es la fabricación de piezas en tres dimensiones, en especial en sectores cuya actividad se desarrolla en condiciones extremas. Ejemplo de ello es la tobera que el centro tecnológico está fabricando en la Titan con la técnica láser DED por aporte de hilo metálico en el marco del proyecto Hiperion II, financiado por el programa Elkartek del Gobierno Vasco. Se trata de una pieza crítica en motores de combustión de aeronaves espaciales y que debe ser capaz de soportar condiciones atmosféricas de Marte (formada principalmente por un 95% de CO2 y presión atmosférica media de 6 mbar). Para ello, la tobera, de 650 mm de altura y 450 mm de diámetro máximo, se está fabricando simulando las condiciones de la atmósfera marciana y con aporte de una superaleación de níquel, para cumplir el requisito de funcionamiento de temperaturas superiores a los 2.000 °C, así como soportar las fuerzas de expansión que se producen en este tipo de piezas para cohetes espaciales. El proyecto de investigación tiene el objetivo de facilitar, mediante el aumento de conocimiento sobre la tecnología láser DED la fabricación in situ, futuras misiones de exploración en Marte, a través de la fabricación o recuperación de componentes metálicos que puedan sufrir desperfectos durante la misión. Un fallo de un componente en el espacio puede resultar crítico para una misión espacial, por lo que el sobredimensionamiento de los componentes, la predicción y estrategia de actuación ante todos los posibles fallos, así como la redundancia funcional de los sistemas son las estrategias típicas de diseño para asegurar el éxito de la misión. En el caso de una misión a Marte, enviar una pieza a reparar a la Tierra o enviar una pieza de reemplazo desde aquí no sería una opción viable por el coste y tiempo que supondría.n Tekniker presentará en su stand en la próxima edición de la Bienal de Máquina Herramienta la máquina Titan junto a la tobera en desarrollo y otra serie de piezas como demostrador de las capacidades de la tecnología de fabricación aditiva DED mediante hilo metálico en procesos de fabricación avanzada. Pabellón 1, stand E15. El centro tecnológico Tekniker ha dado un paso de gigante en la I+D de la técnica DED con el diseño y desarrollo de un equipamiento propio de fabricación aditiva mediante el aporte de hilo metálico a través del láser.
RkJQdWJsaXNoZXIy Njg1MjYx