51 I+D Para asegurar esta calidad, es también de vital importancia la trazabilidad del proceso de fabricación a lo largo de las diferentes etapas de la cadena de valor gracias a la integración de diferentes herramientas o habilitadores digitales. A pesar de que las tecnologías de fabricación aditiva se engloban en el concepto de la Fabricación Digital, la digitalización en la mayoría de los casos se limita solamente a la etapa de impresión en 3D y no contempla ni las etapas previas de pre-procesado, ni las posteriores de acabado. Por este motivo, de cara a una futura industrialización de estas tecnologías, es necesario abordar la trazabilidad del proceso aplicando herramientas digitales y la digitalización de la cadena de valor. DEPOSICIÓN DIRECTA DE ENERGÍA En este escenario, una de las tecnologías de fabricación aditiva más prometedoras para atender esta demanda es la técnica DED (Direct Energy Deposition), conocida también como LMD (Laser Metal Deposition). Se trata de un proceso de aporte directo de energía en el que se emplea una fuente láser para generar un haz concentrado capaz de fundir el material, ya sea en forma de hilo o polvo metálico, permitiendo generar geometrías tridimensionales complejas y obtener recubrimientos o estructuras con propiedades idénticas o mejoradas respecto a las del material base. A diferencia de otras tecnologías de fabricación aditiva, basadas en la fusión directa de hilo o polvo mediante arco eléctrico u otras fuentes de calor, esta A diferencia de otras tecnologías de fabricación aditiva, basadas en la fusión directa de hilo o polvo mediante arco eléctrico u otras fuentes de calor, la tecnología DED genera mínima afectación térmica, y por tanto menor distorsión y deformación en el material. tecnología genera mínima afectación térmica, y por tanto menor distorsión y deformación en el material, garantizando la integridad estructural de los componentes en el proceso de fabricación. El centro tecnológico Tekniker, con una amplia experiencia en procesos de fabricación y un gran conocimiento de estas nuevas tecnologías de producción, ha dado un paso de gigante en la I+D de la técnica DED con el diseño y desarrollo de un equipamiento propio de fabricación aditiva mediante el aporte de hilo metálico a través del láser. La máquina, denominada Titan, cuenta con unas dimensiones de 6.100 x 3.100 x 3.420 mm y es capaz de fabricar componentes de diferentes aleaciones metálicas (titanio, acero, aluminio, etc.) de gran tamaño (hasta de 1.900 x 900 x 750 mm) y de alta calidad para sectores como el aeronáutico, el automotriz, el eólico o el naval, convirtiendo al equipamiento en una gran impresora 3D para la fabricación industrial. Aunque su principal función sea la producción de componentes de aleaciones de titanio, las características y condiciones de la máquina también permiten la fabricación de componentes de otros metales como aceros, aleaciones con base níquel o aluminio, ofreciendo una tasa de aporte de hasta 2-3 kilogramos de material por hora dependiendo del tipo de aleación. Consiste en una máquina cartesiana de tres ejes (más dos opcionales) que tiene acoplado un cabezal láser de aporte de hilo metálico coaxial, alimentador automático con capacidad de suministrar hilo metálico con diámetro de 0,6 a 1,6 mm, una fuente láser de 4 kW de onda continua, con emisión en el espectro infrarrojo cercano, concretamente a 1.070 nm, y una placa opcional calefactora para controlar la temperatura de las piezas durante el proceso de fabricación. Para garantizar una fabricación estable, libre de óxidos, sobre todo en aleaciones de titanio, el equipo incorpora una cabina de atmósfera controlada con un volumen total de 20.000 litros. En ella se puede trabajar en diferentes condiciones: aire (condiciones normales de presión y temperatura), baja presión (0,1 mbar), atmósfera de argón, helio, nitrógeno o CO2 (<20 ppm O2) y sobre presión en argón, helio o nitrógeno (<20 ppm O2). Los tiempos para preparar la cabina cambian según las condiciones atmosféricas deseadas, por ejemplo, desde las 5 horas y 42 minutos que dura la adecuación a Argón (<20 ppm O2), hasta los 25 minutos que tarda en simular las condiciones de vacío (0,1 mbar) + Argón. DIGITALIZACIÓN DEL PROCESO Los procesos DED cuentan con numerosos parámetros (temperatura, geometría, etc.) que influyen en el resultado de la pieza fabricada, lo que los convierte en procesos complejos. En ocasiones, se necesita un gran número de ensayos experimentales. Sin embargo, la gran sensibilidad de las condiciones de fabricación ante pequeñas variaciones puede provocar que estos ensayos se alarguen en exceso, o incluso que las condiciones supuestas como adecuadas no sean extrapolables a la pieza definitiva. Por esta razón, la monitorización y el control del proceso es un aspecto necesario para garantizar la fabricabilidad y calidad de las piezas generadas por fabricación aditiva. En este sentido, Titan integra diferentes herramientas digitales como un software propio (Tekam) desarrollado por Tekniker que simula y genera las trayectorias para procesos de fabricación por DED, un pirómetro coaxial para monitorizar la temperatura durante el proceso y un sistema de visión capaz de monitorizar la geometría del baño fundido en tiempo real.
RkJQdWJsaXNoZXIy Njg1MjYx