Q112 - Industria Química

76 INVESTIGACIÓN Diseñan una proteína artificial capaz de filtrar y degradar plásticos Con el tiempo, el plástico PET o tereftalato de polietileno se va desgastando formando partículas cada vez más pequeñas, los llamados microplásticos. Un equipo de científicos del Instituto de Catálisis y Petroleoquímica del CSIC (ICP-CSIC), junto con grupos del Barcelona Supercomputing CenterCentro Nacional de Supercomputación (BSC-CNS) y de la Universidad Complutense de Madrid (UCM), han desarrollado unas proteínas artificiales capaces de degradar microplásticos de tereftalato de polietileno o PET -uno de los plásticos más empleados, presente en muchos envases y botellas- y reducirlos a sus componentes esenciales, lo que permitiría su descomposición o su reciclaje. Para ello han usado una proteína de defensa de la anémona de fresa (Actinia fragacea), a la que le han añadido la nueva función tras un diseño mediante métodos computacionales. Los resultados aparecen publicados en la revista Nature Catalysis. Cada año se producen cerca de 400 millones de toneladas de plásticos en el mundo, una cifra que aumenta alrededor de un 4% anualmente. Las emisiones que resultan de su fabricación son uno de los elementos que contribuyen al cambio climático, y su presencia ubicua en los ecosistemas conlleva graves problemas ecológicos. Con el tiempo, el PET o tereftalato de polietileno se va desgastando formando partículas cada vez más pequeñas —los llamados microplásticos—, lo que agrava los problemas medioambientales. El PET supone ya más del 10% de la producción global de plásticos y su reciclaje es escaso y poco eficiente. “Lo que hacemos es algo así como añadirle nuevos complementos a una herramienta multiusos para dotarla de otras funcionalidades diferentes”, explica Víctor Guallar, profesor ICREA en el BSC-CNS y uno de los responsables del trabajo. Esos complementos consisten en apenas tres aminoácidos que funcionan como tijeras capaces de cortar pequeñas partículas de PET. En este caso se han añadido a una proteína de la anémona Actinia fragacea, que carece en principio de esta función y que en la naturaleza “funciona como un taladro celular, abriendo poros y actuando como mecanismo de defensa”, explica el investigador. El aprendizaje automático y los súperordenadores usados en esta ingeniería de proteínas permiten “predecir dónde se van a unir las partículas y dónde debemos colocar los nuevos aminoácidos para que puedan ejercer su acción”, resume Guallar. La geometría resultante es bastante similar a la de la enzima PETasa de la bacteria Idionella sakaiensis, capaz de

RkJQdWJsaXNoZXIy Njg1MjYx