PN67 - Industria de la Pintura

TECNOLOGÍA 35 A continuación, se describen algunas de las herramientas y técnicas más relevante que se basan en la IA: • El Machine Learning o aprendizaje automático es una rama de la inteligencia artificial que permite a las computadoras aprender a partir de los datos para hacer predicciones o tomar decisiones de forma autónoma. Existen varios tipos de aprendizaje automático donde destacan el aprendizaje supervisado, el no supervisado o el semisupervisado. Estas modalidades dependen de si los datos han sido etiquetados con anterioridad a su utilización. Por etiquetado se entiende que, además de sus características o atributos, se le ha asignado una respuesta o resultado conocido. • El Deep Learning, o aprendizaje profundo, es una rama del aprendizaje automático que se apoya en redes neuronales artificiales avanzadas para resolver problemas complejos. Estas redes, conocidas como ANNs, se estructuran en capas: una capa de entrada, varias capas ocultas y una capa de salida. Entre las diferentes redes neuronales, las Convolutional Neural Networks (CNNs) se especializan en procesar imágenes y reconocer patrones visuales, como ocurre en aplicaciones de reconocimiento facial o clasificación de objetos. Las Recurrent Neural Networks (RNNs), por su parte, están diseñadas para trabajar con datos secuenciales, como en las series temporales o el procesamiento del lenguaje natural, gracias a sus bucles internos que permiten recordar información previa. • El Procesamiento de Lenguaje Natural (NLP) es un campo de la inteligencia artificial que se enfoca en la interacción entre computadoras y el lenguaje humano. Incluye tareas como tokenización, que divide el texto en unidades más pequeñas como palabras; etiquetado de partes de la oración (Part-of-Speech Tagging), que asigna etiquetas gramaticales a cada palabra; reconocimiento de entidades nombradas (NER), que identifica y clasifica entidades como nombres propios en el texto; y análisis de sentimiento, que determina la polaridad de un texto, identificando si es positivo, negativo o neutro. Finalmente, y por no excluir ninguna herramienta, quiero comentar la visión por computadora que permite a las computadoras interpretar imágenes, reconociendo objetos o personas y ubicándolos en las imágenes. También puede dividir imágenes en partes más pequeñas para su análisis. La robótica ayuda a planificar rutas y controlar movimientos con precisión. Los algoritmos genéticos, por su parte, se usan para tomar decisiones siguiendo reglas o manejando incertidumbres o resolver problemas complejos. Los modelos probabilísticos, como las Redes Bayesianas, calculan relaciones entre factores. LA INTELIGENCIA ARTIFICIAL Y LAS PINTURAS En este contexto, la IA ha revolucionado múltiples industrias y el sector de las pinturas no es una excepción. La inteligencia artificial puede transformar significativamente la forma en que se desarrollan, producen y aplican los recubrimientos y pinturas, ya que puede contribuir a optimizar el proceso, tradicionalmente basado en métodos de prueba y error, haciendo más eficiente el desarrollo de nuevos sistemas de pinturas y mejorando sus propiedades. El estudio y procesado de imagen para el control de calidad en pinturas La utilización y procesado de imágenes mediante inteligencia artificial en el control de calidad industrial puede ser clave para garantizar el rendimiento y la eficiencia de los productos en sectores como el de pinturas y recubrimientos. Este tipo de tecnologías permite analizar y procesar imágenes con una precisión que facilita la verificación de la uniformidad de los recubrimientos y la detección de posibles fallos o irregularidades en las superficies. Las imágenes de alta calidad son esenciales en estos sectores industriales, ya que ofrecen una representación detallada que es vital para evaluar la calidad de los productos. Las especificaciones técnicas de las imágenes, como la resolución, el número de bits por píxel y el color, juegan un papel crucial en la precisión visual de las inspecciones. Gracias a estas imágenes, las empresas pueden mejorar la automatización de los procesos de inspección y lograr una mayor eficiencia en la detección de defectos, lo que repercute en una mejor calidad de los productos y un mayor aprovechamiento de los recursos. En estas posibilidades que la IA ofrece destaca el control de calidad de los parámetros colorimétricos. Mejora y optimización de los desarrollos y sistemas de pinturas La IA está mejorando el desarrollo de los sistemas de recubrimientos y pinturas. Los recubrimientos, que resultan de una combinación compleja de resinas, pigmentos, disolventes y aditivos, deben cumplir con estrictos requisitos de rendimiento y costo, lo cual es un desafío constante. Con la IA, los técnicos de pinturas con ayuda de los desarrolladores pueden generar algoritmos de optimización que evalúan cientos o miles de combinaciones de materiales y predicen su rendimiento basándose en datos experimentales previos. A través del aprendizaje automático, se pueden crear modelos predictivos que contribuyen a generar combinaciones mejoradas en función de propiedades clave como la resistencia a la corrosión, la durabilidad, la adherencia, la tenacidad y el secado rápido, que los desarrolladores pueden discriminar con su experiencia previa.

RkJQdWJsaXNoZXIy Njg1MjYx