METALMECÁNICA 345

IA, VISIÓN ARTIFICIAL, REALIDAD AUMENTADA 79 De esta manera, un gemelo digital con un modo de simulación correctamente configurado permite entender de manera minuciosa el funcionamiento de la máquina y optimizar la producción a niveles límite, sin arriesgar en el proceso la costosa maquinaria ni el proceso de producción en sí mismo. Sensores virtuales Otro aporte importante de la IA discriminativa a los gemelos digitales son los llamados sensores virtuales, que permiten al gemelo recabar información de magnitudes muy difíciles de medir de manera continua sin el uso de modelos discriminativos. Supóngase alguna magnitud que manifieste una complicación enorme para medirse con sensores tradicionales. Pueden existir diversas razones, por ejemplo, que el sensor deba colocarse en un entorno de atmósfera explosiva (ATEX). Un sensor certificado para entorno ATEX puede suponer fácilmente un incremento de 10 o 15 veces el precio de un sensor normal. Otro ejemplo pueden ser variables que son muy difíciles de medir en continuo por la propia naturaleza de la magnitud, como por ejemplo la viscosidad de la pintura. En este caso, los sensores virtuales son una solución para incorporar en el modelo una medida continua de esta magnitud. El objetivo de un sensor virtual es estimar con precisión el valor de una magnitud difícil de medir partiendo de varias magnitudes más fáciles de medir que tengan una correlación con la magnitud original. Desarrollando el ejemplo antes presentado, la viscosidad de la pintura dependerá del tipo de pintura que se ha utilizado, de la cantidad de mezcla que se eche, de la humedad ambiente, de la temperatura ambiente, de la temperatura de la herramienta, de los aditivos que se utilicen, etc. Si es posible controlar estas magnitudes Ilustración 5. Diagrama de etapas de la creación de un sensor virtual. Fuente: Elaboración propia. se puede obtener un valor preciso de la viscosidad de la pintura. El desarrollo de sensores virtuales consta de un conjunto de pasos iterativos tal como se muestra en la Ilustración 5. En este sentido, el Instituto Tecnológico Aidimme ha desarrollado sensores virtuales a medida para distintos procesos productivos con la iniciativa ‘Virtual Sense’, financiada por el fondo FEDER a través del IVACE, para la captura de datos de vital importancia para procesos clave que afectan directamente al acabado final de los productos. La novedad tecnológica reside en el reto del propio diseño del sensor virtual, que se programa a medida para cada proceso, actividad o parámetro a medir, controlando variables que actualmente no se miden o se hace de forma manual en periodos de tiempo discretos, por ejemplo, el gramaje en las líneas de aplicación de pintura, o la viscosidad del producto comentado. A través de técnicas de inteligencia artificial y tratamiento de datos, se establece el modelo que relaciona los parámetros medidos físicamente con la variable objetivo. De esta forma, tras el periodo de entrenamiento del sensor bajo las condiciones del proceso, se ajusta el modelo de cálculo de la medición, aunque se puede modificar tras cada calibración o incluso cuando cambie el proceso. Es decir, el sensor virtual es adaptativo a los cambios en el proceso. IDENTIFICACIÓN DE VARIABLES El primer paso es la identificación de variables cuyo valor pueda guardar relación con el valor final de la magnitud a medir. Para esta tarea es posible contar con la opinión de expertos en cada caso particular, pero no hay que limitarse a estudiar las variables que se sabe con certeza que están correlacionadas, sino que hay que añadir también aquellas para las que se tienen sospechas fundadas aunque no exista ninguna certeza, en caso de que estas no tengan un efecto, o este sea marginal, podrán ser descartadas más adelante. El requisito indispensable para ser estudiadas es que su medición tenga un coste reducido de tiempo y dinero, al menos, inferior al coste hipotético de la medición de la magnitud a estimar. RECOGIDA DE DATOS En esta fase, es necesario realizar una toma de todas las variables implicadas, tanto de entrada como de salida en variedad de condiciones para que el sistema de inteligencia artificial tenga una base sólida sobre la que cimentarse. Siguiendo los ejemplos descritos anteriormente, es posible utilizar un estudio de Copa Ford en laboratorio para obtener los datos de viscosidad en distintas configuraciones de las

RkJQdWJsaXNoZXIy Njg1MjYx