72 IA, VISIÓN ARTIFICIAL, REALIDAD AUMENTADA ¿Pueden las máquinas de producción autooptimizarse? ¿Pueden aprender de sus errores? ¿Y es posible que adquieran conocimientos de otras máquinas? La inteligencia artificial (IA) lo hace posible. Cuando las máquinas de producción con capacidad de autoaprendizaje funcionan de forma inteligente, se consigue una mayor productividad, se reducen los costes, se mejora la calidad y se reducen los tiempos de inactividad. “Hemos dedicado mucho tiempo a optimizar nuestros procesos tecnológicos de producción y hemos conseguido una ventaja competitiva en este ámbito. Ahora queremos hacer lo mismo en la transformación digital de la producción industrial”, explica Markus Spiekermann, jefe del Departamento de Economía de Datos del Instituto Fraunhofer de Ingeniería de Software y Sistemas ISST. “La inteligencia artificial está desempeñando un papel decisivo en el cumplimiento de los nuevos requisitos”, afirma Spiekermann. “Porque sólo mediante el uso de métodos de IA pueden alcanzarse altos niveles de automatización”. MANTENIMIENTO PREDICTIVO PARA TORNOS La tendencia de la IA se está imponiendo en la industria. El fabricante de máquinas-herramienta Weisser Söhne GmbH & Co. KG, por ejemplo, confía en modelos de IA que permiten el mantenimiento predictivo de sus tornos. “El mantenimiento predictivo utiliza la IA para predecir cuándo una máquina requerirá mantenimiento para evitar que se averíe”, explica Robin Hirt, CEO y fundador de la startup Prenode GmbH, con sede en Karlsruhe. Esta empresa de software ayuda a los fabricantes de maquinaria a equipar sus plantas con funciones personalizadas basadas en IA. Las máquinas de producción modernas pueden autooptimizarse con ayuda de la inteligencia artificial, dice Hirt. “Para ello suelen utilizar los llamados métodos de aprendizaje automático. Gracias a ellos, las máquinas reconocen patrones y correlaciones en los datos de producción y obtienen automáticamente mejoras a partir de ellos”. Convertir las fábricas en fábricas inteligentes con IA La inteligencia artificial (IA) está en boca de todos desde el lanzamiento triunfal del chatbot ChatGPT. La IA también está avanzando a pasos agigantados en la tecnología de producción industrial. El aprendizaje automático puede aumentar la eficiencia de la fabricación. Pero, ¿cómo funciona? Daniel Schauber, periodista especializado, Mannheim En muchos casos también es posible que aprendan de sus errores y adopten conocimientos técnicos de otras máquinas. DATOS DESCENTRALIZADOS UTILIZADOS PARA GENERAR UN MODELO COMÚN DE IA A menudo se utiliza la técnica del aprendizaje federado, ya que los datos obtenidos de un solo torno suelen ser insuficientes como base para un modelo de IA preciso. El aprendizaje federado facilita el “entrenamiento” de un modelo común de IA, con datos almacenados de forma descentralizada pero sin compartirlos directamente. Por tanto, los datos individuales permanecen en las máquinas respectivas y no tienen que almacenarse de forma centralizada en un lugar (como en la nube del fabricante de la máquina). Los modelos de IA utilizan datos de tornos en curso para estimar el estado actual de la planta y, a continuación, lo transmiten al personal operativo. Para ello se utilizan redes neuronales de aprendizaje profundo.
RkJQdWJsaXNoZXIy Njg1MjYx