FERTILIZACIÓN 56 • Barjasteh, A., Dehghani, Z., Lamichhane, P., Kaushik, N., Choi, E.H., Kaushik, N.K. (2021). Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Applied Sciences 11, 3372. • Chen, J.G., Crooks, R.M., Seefeldt, L.C., Bren, K.L., Bullock, R.M., Darensbourg, M.Y., Holland, P.L., Hoffman, B., Janik, M.J., Jones, A.K., Kanatzidis, M.G., King, P., Lancaster, K.M., Lymar, S.V., Pfromm, P., Schneider, W.F., Schrock, R.R. (2018). Beyond fossil fuel–driven nitrogen transformations. Science 360, eaar6611. • Graves, D.B., Bakken, L.B., Jensen, M.B., Ingels, R. (2019). Plasma Activated Organic Fertilizer. Plasma Chemistry and Plasma Processing 39, 1–19. • Gupta, R., Kaushik, N., Negi, M., Kaushik, N.K., Choi, E.H. (2024). Molecular insights: Proteomic and metabolomic dissection of plasma-induced growth and functional compound accumulation in Raphanus sativus. Food Chemistry 435, 137548. • Haruyama, T., Namise, T., Shimoshimizu, N., Uemura, S., Takatsuji, Y., Hino, M., Yamasaki, R., Kamachi, T., Kohno, M. (2016). Non-catalyzed one-step synthesis of ammonia from atmospheric air and water. Green Chemistry 18, 4536–4541. • Ito, M., Oh, J.S., Ohta, T., Shiratani, M., Hori, M. (2018). Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Processes and Polymers 15, e1700073. • Judée, F., Simon, S., Bailly, C., Dufour, T. (2018). Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/ CONCLUSIÓN Los resultados obtenidos hasta el momento ponen de manifiesto que la tecnología del PANT es una herramienta con gran potencial para producir fertilizantes nitrogenados líquidos, in situ y a demanda, utilizando una combinación de sencillas unidades de dosificación automatizadas en línea, como se indica en la Figura 2. Sin embargo, su implementación en la práctica agrícola requiere aún de una profunda investigación orientada a definir las condiciones óptimas de generación y aplicación del plasma, así como a evaluar críticamente su efectividad como fertilizante en las diferentes especies vegetales con el fin de desarrollar protocolos de tratamiento adecuados, prestando atención, asimismo, a la viabilidad de la estrategia para los agricultores, incluyendo aspectos relacionados con los costes de establecimiento, producción y operación. n consumption mechanisms. Water Research 133, 47-59. • Kelly, S., Bogaerts, A. (2021). Nitrogen fixation in an electrode-free microwave plasma. Joule 5, 3006– 3030, November 17, 2021 • Lamichhane, P., Paneru, R., Nguyen, L.N., Lim, J.S., Bhartiya, P., Adhikari, B.C., Mumtaz, S. Choi, E.H. (2020a). Plasma-assisted nitrogen fixation in water with various metals. Reaction Chemistry and Engineering 5, 2053–2057. • Lamichhane, P., Adhikari, B.C., Nguyen, L.N., Paneru, R., Ghimire, B., Mumtaz, S., Lim, J.S., Hong, Y.J., Choi, E.H. (2020b). Sustainable nitrogen fixation from synergistic effect of photo-electrochemical water splitting and atmospheric pressure N2 plasma. Plasma Sources Science and Technology 29, 045026. • Lamichhane, P., Veerana, M., Lim, J.S., Mumtaz, S., Shrestha, B., Kaushik, N.K., Park, G., Choi, E.H. (2021). Low-temperature plasma-assisted nitrogen fixation for corn plant growth and development. International Journal of Molecular Sciences 22, 5360. • Lo Porto, C., Ziuzina, D., Los, A., Boehm, D., Palumbo, F., Favia, P., Tiwari, B.K., Bourke, P., Cullen, P.J. (2018). Plasma activated water and airborne ultrasound treatments for enhanced germination and growth of soybean. Innovative Food Science and Emerging Technologies 49,13–19. • Mousavi, H., Cottis, T., Pommeresche, R., Dörsch, P., Solberg, S. O. (2022). Plasma-treated nitrogenenriched manure does not impose adverse effects on soil fauna feeding activity or springtails and earthworms abundance. Agronomy 12, 2314. • Pandey, S., Jangra, R., Ahlawat, K., Mishra, R., Mishra, A., Jangra, S., Prakash, R. (2023). Selective generation of nitrate and nitrite in plasma activated water and its physicochemical parameters analysis. Physics Letters A 474, 128832. • Park, D.P., Davis, K., Gilani, S., Alonzo, C.A., Dobrynin, D., Friedman, G., Fridman, A., Rabinovich, A., Fridman, G. (2013). Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Current Applied Physics 13, S19–S29. • Patil, B.S., Wang, Q., Hessel, V., Lang, J. (2015). Plasma N2-fixation: 1900–2014. Catalysis Today 256, 49–66. • Sharma, R.K., Patel, H., Mushtaq, U., Kyriakou, V., Zafeiropoulos, G., Peeters, F., Welzel, S., van de Sanden, M.C., Tsampas, M.N. (2020). Plasma activated electrochemical ammonia synthesis from nitrogen and water. ACS Energy Letters 6, 313–319. • Wang, H., Han, R., Yuan, M., Li, Y., Yu, Z., Cullen, P.J., Du, Q., Yang, Y., Wang, J. (2023). Evaluation of plasma-activated water: Efficacy, stability, physicochemical properties, and mechanism of inactivation against Escherichia coli. LWT - Food Science and Technology 184, 114969. • Wu, S., Thapa, B., Rivera, C. Yuan, Y. (2021). Nitrate and nitrite fertilizer production from air and water by continuous flow liquid-phase plasma discharge. Journal of Environmental Chemical Engineering 9, 104761. • Zhang, T., Zhou, R., Zhang, S., Zhou, R., Ding, J., Li, F., Hong, J., Dou, L., Shao, T., Murphy, A.B., Ostrikov, K., Cullen, P.J. (2022). Sustainable ammonia synthesis from nitrogen and water by one-step plasma catalysis. Energy and Environmental Materials 0, 1–9. REFERENCIAS
RkJQdWJsaXNoZXIy Njg1MjYx