FY60 - FuturEnergy

Gases Renovables | Renewable Gases FuturEnergy | Mayo May 2019 www.futurenergyweb.es 53 de 4.500 TWh actuales a uno 2.100 TWh en 2050. El transporte ligero por carretera (automóviles, vehículos comerciales ligeros) y el transporte marítimo doméstico serán principalmente eléctricos en 2050 en ambos escenarios. El transporte pesado a larga distancia requiere de combustibles con una alta densidad energética, lo que significa que el uso directo de electricidad (baterías) es menos adecuado para el transporte marítimo internacional y la aviación. En el transporte pesado por carretera y en el transporte marítimo internacional, el hidrógeno y el bio-LNG dominan en el escenario OG, mientras que en el escenario MG se utilizan grandes cantidades de biodiésel. La aviación continuará utilizando queroseno,mezcla de biocombustible y queroseno sintético, en ambos escenarios. Mantener la infraestructura de gas genera 217.000 M€/año de ahorro de costes al sistema energético La red europea de transmisión y distribución de gas consta de aproximadamente 260.000 km de red de alta presión, de los cuales 200.000 km son operados (principalmente) por operadores de sistemas de transmisión, más aproximadamente 1,4 millones de km de tuberías de media y baja presión operadas por operadores de sistemas de distribución. La infraestructura de gas garantiza la fiabilidad y flexibilidad del sistema energético. Navigant espera que las redes de transmisión y distribución de gas sigan teniendo un papel valioso en 2050, transportando biometano e hidrógeno. En los dos escenarios, los volúmenes de gas que circulan por las redes son menores en 2050 que en 2019. Sin embargo, el uso de gas en la infraestructura existente generará importantes beneficios en los costes netos del sistema energético. En comparación con el escenario MG, el uso de este gas a través de la infraestructura de gas existente ahorra a la sociedad 217.000 M€/ año en todo el sistema energético. El ahorro de costes por unidad de energía es mayor en la calefacción de edificios, donde el gas renovable se usa combinado con electricidad mediante bombas de calor híbridas, en edificios que están conectados a las redes de gas en la actualidad. Además, el uso de gas renovable en la producción de electricidad genera ahorros significativos en el sistema energético, al evitar inversiones costosas en energía de biomasa sólida o incluso en almacenamiento estacional en baterías, más caro. compared to today. The MG scenario assumes that only all-electric heat pumps and district heating will be available. Industry Navigant assessed the expected 2050 energy demand in the iron and steel, ammonia and methanol, and cement and lime industries, as well as the optimal netzero emissions energy mix. The assessment concluded that industrial low temperature heat will be mostly based on direct electricity in both study scenarios. High temperature industrial heat is mainly provided by hydrogen in both scenarios, plus some biomethane and hydrogen as industrial feedstock. CCS will be needed to reduce process emissions, for example, from steelmaking and cement production. The difference between both scenarios is that in MG green hydrogen is produced at industrial sites, not requiring gas infrastructure, whereas in OG green hydrogen is produced close to large-scale (offshore) electricity generation and transported to demand hubs using the existing gas infrastructure. Transport Navigant also assessed scenarios to fully decarbonise EU transport by 2050 and the potential role for renewable and lowcarbon gas, focusing on road transport (passenger cars, trucks, and buses), shipping and aviation. The study concludes that EU transport energy demand can be reduced by half in both scenarios from today’s 4,500 TWh to about 2,100 TWh by 2050. Light road transport (passenger cars, light commercial vehicles) and domestic shipping will be primarily electric in 2050 in both scenarios. Long-distance heavy transport requires fuels with a high energy density, meaning that direct use of electricity (from batteries) is less suitable for international shipping and aviation. In heavy road transport and international shipping, hydrogen and bio-LNG dominate in the OG scenario while large quantities of biodiesel are used in the MG scenario. Aviation will continue to use kerosene, a mix of bio jet fuel and synthetic kerosene, in both scenarios. Maintaining the gas infrastructure generates €217bn in annual energy system cost savings The European gas transmission and distribution network consists of approximately 260,000 km of high-pressure network of which 200,000 km are operated (mainly) by transmission system operators, plus approximately 1.4 million km of medium and low-pressure pipelines operated by distribution system operators. The gas infrastructure ensures the reliability and flexibility of the energy system. Navigant expects gas transmission and distribution networks to still have a valuable role by 2050, transporting biomethane and hydrogen. In both scenarios, volumes of gas used in networks are lower in 2050 than in 2019. Still, the use of gas in the existing infrastructure will generate significant net energy system cost benefits. Compared to the MG scenario, the use of this gas through the existing gas infrastructure saves society €217bn annually across the energy system. Cost savings per unit of energy are highest in the heating of buildings, where renewable gas is used combined with electricity by means of hybrid heat pumps, in buildings that are connected to gas grids today. Also, the use of renewable gas in electricity production generates significant energy system savings because it avoids costly investments in solid biomass power or even costlier battery seasonal storage. Cantidad de gas usada por sector y ahorro de costes energéticos resultante en el escenario OG frente al escenario MG. | Quantities of gas used per sector and resulting energy system cost savings in the OG scenario versus the MG scenario

RkJQdWJsaXNoZXIy Njg1MjYx