FY51 - FuturEnergy

Energías Renovables | Renewable Energies FuturEnergy | Junio June 2018 www.futurenergyweb.es 57 controlado, ¡incluso si llueve, nieva o se congela! Dos frenos pasivos de pinza flotante, con una fuerza de cierre de 160 kN cada uno, están montados en cada cabrestante del sistema de grúa. Los frenos de disco hidráulicos generalmente sirven como freno de retención, pero también gestionan el frenado de emergencia cuando es necesario. Los frenos se cierran por fuerza de resorte y se abren hidráulicamente; por tanto, en cada sistema de cabrestante está integrado un paquete de potencia hidráulica. Central eléctrica mareomotriz en la costa norte escocesa En Pentland Firth, el estrecho entre la costa norte escocesa y las islas Orkney, hay corrientes oceánicas con velocidades estimadas de 5 m/s. En esta ubicación de alto recurso energético se construirá la mayor central de energía mareomotriz del mundo. El diseño se extiende a aproximadamente 30 m de profundidad en una superficie básica de más de 10 m2 y es operado por la compañía escocesa de ingeniería MeyGen Limited. La configuración del campo de turbinas se lleva a cabo en varias fases. En la primera fase, se instalaron en el fondo del mar cuatro turbinas submarinas de los fabricantes Atlantis Resources Limited y Andritz Hydro Hammerfest. La operación comenzó en 2016 y para 2022 habrá instaladas 80 turbinas más, logrando una potencia total de 86 MW. El objetivo a largo plazo de este proyecto mareomotriz es un total de 398 MW, en ese momento MeyGen superaría la actual central de energía mareomotriz más grande de mundo, Sihwa-ho en Corea del Sur, con 254 MW. La turbina AR1500 de Atlantis Resources Limited es una de las dos turbinas de alto rendimiento que actualmente están ancladas en el fondo del estrecho. Con una potencia nominal de 1,5 MW, esta es una de las turbinas submarinas más productivas del mundo: con un grado promedio de uso del 40% y una disponibilidad del 95%, la turbina puede producir anualmente alrededor de 5 millones de kWh de energía eléctrica. In cooperation with ThyssenKrupp Mill Services & Systems, a two-carrier double-acting winch, supplied by Demag, with a load capacity of 250 t was specifically developed for the requirements of theWilhelm shaft. The lifting unit provides the infrastructure for the installation of pumps and pipelines. Every 10 m the next pipe section is added, so controlled braking is constantly required between intervals, even during rain, snow or ice. Two passive floating calliper brakes, with a clamping force of 160 kN each, are mounted to each winch of the crane system. The hydraulic disc brakes usually serve as a holding brake, but also handle emergency braking when necessary. The brakes are closed by spring force and opened by hydraulics, thus integrating a hydraulic power pack into each winch system. Tidal power station off the Scottish coast Pentland Firth, the straits between the north coast of Scotland and the Orkney Islands, has ocean currents with speeds estimated at five metres per second. The biggest tidal power station in the world will be constructed at this high-energy location. The design extends to a depth of some 30 metres on a basic surface of more than 10 m2 and is operated by the Scottish engineering company MeyGen Limited. The setup of the turbine field is taking place in several stages. In the first stage, four underwater turbines from manufacturers Atlantis Resources Limited and Andritz Hydro Hammerfest are installed on the seabed. The operation started in late 2016 with a further 80 turbines proposed by 2022, achieving a total output of 86 MW. The long-term objective of this tidal project is a total of 398 MW, at which point MeyGen would exceed the current largest worldwide tidal power station of Sihwa-ho in South Korea with 254 MW. Atlantis Resources Limited’s AR1500 is one of two highperformance turbines that are currently anchored at the bottom of the straits.With a nominal power of 1.5 MW, this is one of the most productive underwater turbines in the world.With an average degree of use of 40% and an availability of 95%, the turbine can produce around 5 million kWh of electrical energy annually. The turbine is 22.5 metres high and has three adjustable rotor blades, with a total diameter of 18 m, positioned at its peak. The 11-metre-long nacelle situated on the tower weighs 150 tonnes and can rotate through 360 degrees. To optimise the energy of the tides, an azimuth bearing realigns the driving and locking system with each turn of the tide, while the drive train of the turbine is fixed by three electromechanical brakes. The active floating calliper brakes, called floaters, generate clamping forces of up to 125 kN each. They are directly arranged behind the generator and typically open during normal operation. The rotor brakes close when the turbine is required to turn to a new flow direction when the tides turn. Afterwards, the systems are reopened and the ocean current can drive the rotor blades again. The brakes are designed as holding brakes and can be used as emergency brakes in exceptional cases. The electromechanical systems are self-locking, i.e. the power supply can be switched off as soon as the brakes are activated. If the power supply is unexpectedly reduced or even interrupted, the braking force remains due to the Los sistemas de frenos electromecánicos de tipo palanca EMB-STOP M-A-xx-F son la solución flexible y adecuada para un tiempo de operación extremadamente largo con bajos costes de operación y la mejor seguridad posible de la planta | The electromechanical brake systems of the type EMB-STOP M-A-xx-F lever are the flexible and suitable solution for an extremely long operating time with low operating costs and best-possible plant safety

RkJQdWJsaXNoZXIy Njg1MjYx