FY32 - FuturEnergy

Mediante el sistema de monitorización, desarrollado por Grupo Aresol, se puede controlar de forma remota la instalación gestionando las temperaturas de consigna, curvas de calefacción, estado de las calderas, alarmas, consumos y otros parámetros de vital importancia para el correcto funcionamiento y mantenimiento de la misma. Con estas actuaciones se han resuelto deficiencias y aplicado mejoras en la instalación hidráulica: • Sustitución de bomba de calefacción obsoleta (que daba servicio a dos circuitos) por dos bombas electrónicas, optimizando el funcionamiento de la instalación y reduciendo los consumos eléctricos. • Sustitución de bomba de primario de ACS (insuficiente para dar el caudal necesario) por una bomba electrónica. A room has been set up for biofuel storage adjacent to the boiler room by way of a silo with an approximate 100 m3 capacity. The silo is filled via direct unloading from the loading hopper; alternatively it can be filled via pneumatic delivery from a tanker truck. From the two 5,000 litre buffer tanks situated in the boiler room, energy is distributed to every home via a network of pipes, the district heating system. The boiler room has been adapted to the current standards contained in the Technical Building Code and the Regulations on Thermal Installations in Buildings (RITE). Other refurbishments undertaken in the boiler room include the installation of fire doors, fire detection systems, ventilation and adequate lighting. By means of the monitoring system, developed by Grupo Aresol, the installation can be remotely controlled to manage the set point temperatures, heating curves, boilers’ status, alarms, consumption and other crucially important parameters for their proper operation and maintenance. The following measures have resolved deficiencies and have applied improvements to the hydraulic installation: • Replacing the obsolete heat pump (that used to serve both circuits) with two electronic pumps, optimising the operation of the installation and reducing electricity consumption. • Replacing the primary DHW pump (insufficient to provide the necessary flow) with an electronic pump. • Renewing the 1,500 litre DHW accumulator and the plate exchanger with two new 1,500 litre interaccumulators, improving the supply of DHW to every home. • Installing all necessary and previously non-existent components such as pressure gauges, thermometers, probes, pressure switches and expansion tanks. For the district heating network, the heating and DHW distribution pipes were replaced for each hallway. To implement this network, black soldered steel pipe was used, covered with an elastomeric insulating sleeve in line with RITE regulations. The new DHW distribution system for each hallway was implemented using compound polypropylene, fibreglassreinforced PP-R pipe, insulated with an elastomeric sleeve. A general thermal power meter was installed in the boiler room to calculate the total energy consumed. Figura 4. Vista de programa de monitorización | Figure 4. View of the monitoring programme Figura 5. Lecturas de contador de energía térmica | Figure 5. Thermal power meter readings Figura 3. Vista de depósitos de inercia Figure 3. View of the buffer tanks Climatización eficiente | Efficient Hvac FuturEnergy | Julio-Agosto July-August 2016 www.futurenergyweb.es 37

RkJQdWJsaXNoZXIy Njg1MjYx