FuturEnergy | Junio June 2016 Eólica | Wind Power www.futurenergyweb.es 81 como máxima general ningún procedimiento de inspección que aun siendo óptimo, exceda de unos costes operativos muy ajustados. Partiendo de esta máxima se analiza un segundo principio, en este caso relativo a la aplicación civil industrial del sector SARP, que sostiene que no suele ser viable emplear tecnología aérea para sustituir aquello que puede hacerse desde tierra de forma barata, segura y exitosa, salvo que se superen estos tres parámetros desde el aire, lo cual suele ser un complejo desafío. Necesidades del sector La industria eólica demanda informes técnicos motivados que detecten con precisión, analicen, diagnostiquen las patologías y emitan recomendaciones concisas ajustadas a los principios de economía y prudencia. Datos que permitan establecer un esquema de mantenimiento predictivo. Esto que puede parecer simple, dista mucho de serlo. Las consecuencias de un defecto detectado en una pala pueden variar en función del proceso de fabricación, del modelo e incluso de la serie. El diagnóstico de defectos de palas es una tarea de alto nivel técnico, que requiere experiencia y un profundo conocimiento histórico de este producto tan especializado y extraordinariamente diverso. Actualmente, la industria eólica cuenta con procedimientos bien testados para la detección de daños en las palas de los aerogeneradores que, cuando son aplicados correctamente, aportan buenos resultados, entre ellos se encuentran: • Inspecciones de proximidad basadas en: descuelgue de técnicos con cuerdas, descuelgue de técnicos con ascensores motorizados, auxiliados de poleas y cableado, empleo de plataformas elevadoras. • Inspección a distancia empleando medios ópticos terrestres: telescopios, teleobjetivos. attention. Taking into account the number of elements to be maintained and the limited budget for this work, as a general rule, no inspection procedure takes place that goes beyond these very tight operational costs, despite being optimal. Based on this premise, a second principle is analysed which in this case concerns the civil industrial application of the RPAS sector that maintains that it is not usually feasible to use aerial technology to replace what can be done from ground level cheaply, safely and successfully, unless these three parameters can be overcome from the air, which would represent a complex challenge. Sector requirements The wind power industry requires justified technical reports that accurately detect, analyse and diagnose pathologies and issue precise recommendations that are in line with the principles of economy and prudence. Data that facilitates the creation of a predictive maintenance plan. Despite this seeming to be a simple objective, it is far from being so. The consequences of a defect detected in a blade can vary depending on the manufacturing process, the model and even the series. Blade defect diagnosis is an extremely technical task that requires experience and an in-depth historical knowledge of this specialist and extraordinarily diverse product. The wind industry has well-tested procedures in place for the detection of damage to wind turbine blades that, when correctly applied, offer good results. These include: • Close-up inspections based on: lifting technicians via ropes, via motorised lifts, aided by pulleys and cabling, the use of platform lifts. • Remote inspection using ground-level optical mediums such as telescopes, telephoto lenses. Drone-based inspection (RPAS) This innovative approach offers advantages compared to lifting methods in terms of safety. Its downtime is generally no more than that of the telescope however it can never be competitive in terms of costs or logistics. Today, the operation of a RPAS system, even in the case of the highly efficient small multi-rotors currently available, requires a greater investment and involves more complexity than a simple telescope. Its advantages lie in the possibility of obtaining improved images of the defects, however this is not always the case as it depends on the sensor used. For example the telescope easily surpasses video photograms in terms of quality. Unlike all the other methods, including the telescope, operation via RPAS does not currently offer inspectors real time visualisation of the damage with a sufficiently high level of quality while the aircraft is carrying out the inspection. The most sophisticated wireless video transmission mechanisms offer lower resolutions compared to the quality of the image obtained with a telescope. The reception of this signal in the field and its correct visualisation on screen or via special glasses Aracnocóptero TF mapeando una pala. Foto C. Bernabéu Aracnocóptero TF mapping a blade. Photo C. Bernabéu
RkJQdWJsaXNoZXIy Njg1MjYx