FO91 - Futurenviro

• Producción de agua de servicio para los servicios internos de la planta y el desplazamiento de la membrana. • Mejores prácticas de ingeniería para lograr un bajo consumo de energía. • Segundo paso para reducir la concentración de cloruro, boro y sólidos disueltos total de sólidos disueltos. El diseño adoptado tiene las siguientes configuraciones: • Doble colector de PRFV que alimenta el sistema • Un centro de alta presión de alta eficiencia en el que una sola bomba de alta presión alimenta 3 bastidores de primer paso de OI, con un número total de 6 bombas de servicio y una bomba de reserva • Dieciocho trenes de ósmosis inversa de primer paso • Dispositivo de recuperación de energía para cada bastidor con la bomba de refuerzo asociada bomba asociada • Seis (5+1) bombas de refuerzo de alimentación al segundo paso • Cinco estructuras de rack de segundo paso, divididas en dos, formando 10 subracks que pueden actuar como unidades de proceso independientes. El sistema de ósmosis inversa se ha diseñado con una unidad fuera de servicio, siguiendo la filosofía N-1. Las condiciones de funcionamiento de las membranas varian para N bastidores en servicio (18 bastidores de 1er paso y 10 sub-bastidores de 2º paso) y N-1 bastidores en servicio (17 bastidores de 1er racks de primer paso y 9 subracks de segundo paso). Centro de bombeo de alta presión El diseño proporciona un sistema de bombeo de alta presión en el que cada bomba de alta presión está dimensionada para alimentar tres bastidores de ósmosis inversa. El sistema cuenta con una unidad de repuesto unidad que está conectada al sistema general. Este diseño permite el uso de bombas de alta presión más eficientes. The reverse osmosis process is designed in two passes in order to achieve the required permeate production and quality. The first pass has a split partial design, with some of the permeate being taken from the front where the quality of the water is better and the remainder from the rear. Permeate taken from the rear is treated in the 2nd pass. The percentage of flow going into the front of the 1st pass as opposed to the rear varies in accordance with the temperature and salinity of the seawater. The reverse osmosis process is designed with the following objectives and considerations: • To satisfy product water demand in terms of both quality and quantity. • To enable seawater temperature and salinity variations within the design parameters. • To produce service water for internal plant services and membrane displacement. • To implement best engineering practices to achieve low energy consumption. • To include a second pass to reduce chloride, boron and total dissolved solids concentration. The adopted design has the following configurations: • Double GRP pipe to feed the system • High-efficiency high-pressure pumping system in which a single high-pressure pump feeds 3 RO 1st pass racks, with a total number of 6 duty pumps and one standby pump • 18 1st pass RO trains • Dedicated energy recovery device for each rack with associated booster pump • 6 (5+1standby) booster pumps to feed the 2nd pass • 5 2nd pass rack structures, divided in two to form 10 subracks which can act as in-dependent process units The RO system has been designed to enable operation with one unit out of service, in accordance with the N-1 practice. The membrane operating conditions will vary depending on whether N racks (18 1st pass racks and 10 2nd pass sub-racks) or N-1 racks are in service (17 1st pass racks and 9 2nd pass subracks). High-pressure pumping station The plant is designed with a high-pressure pumping system in which each high-pressure pump is sized to feed three RO racks. Redundancy in the system is provided by means of a reserve unit connected to the overall system. This design enables the use of more efficient HP pumps. Isolating plug valves enable the system to be operated as a global pressure system or individual subsystems. If the valves are closed, each pump can feed two groups of three racks. If the valves are open, the flows will be distributed as required in the open system. ERD and booster pump The second part of the flow fed to the membranes is conveyed from the intermediate ERD pumps to the RO building by means of 2 headers. The pressure of this flow is increased in the ERD units using the residual pressure in the reject brine. A booster pump enables the pressure to be increased in order to overcome head www.futurenviro.es | Junio-Julio June-July 2022 45 Desaladora Shuqaiq 3 (Arabia Saudí) | Shuqaiq 3 Desalination Plant (Saudi Arabia)

RkJQdWJsaXNoZXIy Njg1MjYx