www.futurenviro.es | Abril-Mayo April-May 2021 36 Gestión y tratamiento de agua | Water management and treatment ahorrando 250.000 m3 de agua al año respecto a un tratamiento de agua convencional con aditivios. Reducir el número de purgas supone un uso mucho más eficiente del agua utilizada, y por lo tanto UET es una tecnología alineada con el ODS número 6 . Obviamente también hay que sumar el ahorro de los aditivos químicos del tratamiento tradicional de agua en las torres de refrigeración, y el ahorro de los costes asociados a la formación de incrustaciones como la pérdida de eficiencia de los intercambiadores o la sustitución del relleno de la torre de refrigeración. Las precipitaciones en el reactor de UET se producen en la pared del cátodo. La velocidad de estas precipitaciones es muy alta y siempre se producen arrastrando moléculas de agua. Esto provoca que la retirada de las precipitaciones en el reactor sea un proceso manual muy rápido, que en función del tipo del agua se debe realizar una vez cada 2 o 3 meses. La tecnología de UET se adapta a diferentes tipologías de agua y en función de las necesidades de cada proceso. Los requisitos mínimos del agua para poder ser tratada con los reactores de UET es un pH mayor de 6,5 y unos sólidos en suspensión de 80 ppm commáximo. La tecnología de UET ha dado resultados en todo el mundo, en su canal de YouTube puedes ver los 5 testimonios de clientes de UET en 4 continentes: Rabin Medical Center en Israel, Planta de Unigel en Brasil, Mina de oro Barberton en Sudáfrica, Planta termosolar en Lebrija (Sevilla) y Data center Schuberg Philis en Holanda. The advantages versus external biocide dosing are very clear: cost, logistics, danger, need to control pH and temperature for dosing to be effective, need for dilution, potential corrosion effects due to excessive dosing, need for constant dosing... UET technology is completely modular. The treatment capacity can be increased by increasing the number of reactors from 2 reactors to more than 100. The energy consumption of electrolysis in UET reactors is extremely low. Moreover, as the unit has no moving parts, maintenance requirements and wear are minimal. UET at the Lebrija solar thermal power plant (Seville) The Lebrija CSP plant, which has an installed capacity of 50 MW, was built jointly by Siemens and Valoriza. The plant was completed and commissioned in 2010. The plant requires a recirculation flow of 12,000 m3/h in the cooling towers and is located in an area with little access to water with sufficient quality for the cooling circuit. The UET reactors treat 2,000 m3/h of the total recirculation flow. The reactors create a preferential gradient precipitation point in the circuit, enabling up to 6 cycles of concentration without scaling (as can be seen in the photographs of the heat exchangers) and saving 250,000 m3 of water per annum compared to conventional water treatment with chemicals. Reducing the number of blowdowns means much more efficient use of water, meaning that UET is a technology aligned with the SDG number 6. Obviously, there are also savings on the chemical additives used in traditional cooling tower water treatment, as well as a reduction in costs associated with scale formation, such as loss of efficiency of heat exchangers or replacement of the cooling tower fill. Precipitations in the UET reactor occur on the cathode wall. The velocity of these precipitations is very high and they always result in the entrainment of water molecules. This means that the removal of the precipitations in the reactor is a very fast manual process, which, depending on the type of water, must be carried out once every 2 to 3 months. UET technology adapts to different types of water and the needs of each process. The minimum requirements to enable water to be treated with UET reactors is a pH of over 6.5 and a maximum suspended solids concentration of 80 ppm. UET technology has delivered results all over the world. The company’s YouTube channel features 5 testimonials from UET customers in 4 continents: the Rabin Medical Center in Israel, the Unigel plant in Brazil, the Barberton gold mine in South Africa, the solar thermal power plant in Lebrija (Seville) and the Schuberg Philis data centre in the Netherlands. Vista general de la planta termosolar de Lebrija (Sevilla) | General view of Lebrija solar thermal power plant (Seville) Fotografías de las Inspecciones de los intercambiadores de calor en 2012 y 2016 en la planta termosolar de Lebrija | Photos of heat exchanger inspections in 2012 and 2016 at the Lebrija solar thermal power plant.”
RkJQdWJsaXNoZXIy Njg1MjYx