Desalación | Desalination FuturEnviro | Noviembre/Diciembre November/December 2020 www.futurenviro.es 24 dades, y una sonda termométrica automatizada con datalogger de elaboración propia, imagen 3. De esta forma, se recopilaron datos de diversos ámbitos, que posteriormente, permitieron realizar un Estudio de Contorno Territorial de la zona de la Balsa de Captación y sus alrededores, y un Estudio de Contorno Técnico, asociado a la situación actual de las instalaciones fotovoltaicas flotantes convencionales y marinas, tecnologías comerciales, riesgos, etc. Posteriormente, mediante la utilización de los datos bibliográficos y experimentales obtenidos, se realizó de forma análoga el Diseño Thus, data from a variety of areas was compiled to enable the subsequent execution of a Study of the Characteristics of the Terrain of the Intake Pond and Surrounding Area, and a Study of the Technical Characteristics associated with the current state of development of conventional and marine FPV facilities, commercial technologies, risks, etc. Subsequently, the data from the literature and the experimental data obtained were used to execute the Design of the Nearshore Photovoltaic Plant and the Thermal/Thermodynamic Study associated with the evaluation of the shading effect caused by the positioning of the PV solar field on the surface of the water in the intake pond. FPV Plant Design A number of alternatives were examined in the design of the nearshore FPV plant. In order to achieve the main objective of covering the greatest possible percentage of the pond, the solution chosen involved covering a surface area of 12,500 m2, with the photovoltaic field divided into four rectangular sections in order to overcome problems posed by the irregularities of the pond. The process of selecting key design components involved the study of commercially-available technologies suitable for application in a marine environment. Due to their characteristics, the ISIFLOATING floating structure, manufactured by ISIGENERE, and the TSM-DEG15H.20(II) 410W solar panel were chosen. These components are certified as suitable for saline environments and are resistant to the Haze meteorological phenomenon typical of the Canary Islands. Table R-1 shows the FPV plant design selected. This solution was tested using PVSYST software and a proposed solution covering a smaller surface area submitted by ISIGENERE. The final design proposed in the project results in the offsetting of almost 3% of total fossil-fuel-derived energy consumption at the SWRO plant, a reduction of 1,899.33 t CO2/annum in carbon footprint and a financial saving of €170,422.40/annum. Resultados de diseño finales | Final design results Zona 1 | Zone 1 Zona 2 | Zone 2 Zona 3 | Zone 3 Zona 4 | Zone 4 Superficie [m2] | Surface area [m2] 2.550 | 2,550 4.400 | 4,400 2.500 | 2,550 2.250 | 2,550 Módulos Fotovoltaicos | PV Modules 800 1410 | 1,410 800 720 Potencia estimada [kW] | Estimated power output [kW] 325,00 | 325.00 578,00 | 578.00 325,00 | 325.00 328,00 | 328.00 Nº de inversores | No. of inverters 1 2 1 1 Nº de series | No. of series 16 15 16 15 Nº de ramas | No. of strings 50 47 50 48 Potencia instalada | Installed capacity 1,529 MW | 1.529 MW Energía producida | Energy produced 2.434.605,66 kWh/año | 2,434,605.66 kWh/annum Total paneles solares | Total solar panels 3.730 módulos | 3,730 modules Tabla R-1. Resultado del diseño final de la planta solar fotovoltaica nearshore. [Fuente: Elaboración propia] Table R-1. Final design results of the nearshore photovoltaic plant. [Source: in-house] Sonda termométrica automatizada con datalogger en pértiga de elaboración propia. Proprietary automated thermometric sensor with pole-mounted datalogger.
RkJQdWJsaXNoZXIy Njg1MjYx