56 SECTOR Petronor junto con Ayesa, proveedor global de servicios de tecnología e ingeniería, han desarrollado una iniciativa para la búsqueda de modelos de Inteligencia Artificial generativa (GenAI) que permitan a la firma petrolífera mejorar en términos de eficiencia y rentabilidad en sus plantas de producción. Fruto de este trabajo, y a través de la iniciativa aceleradora de innovación promovida por Repsol, Hackia, Ayesa ha abordado el desafío Gidabot. En él, ambas compañías han podido explorar los límites de esta tecnología para desarrollar un ‘Agente Experto’ en el proceso catalítico de la refinería de Petronor que proporcione un soporte rápido y ágil para la consulta de documentación técnica por parte de los ingenieros químicos, así como para predecir las condiciones de operación para el refino. Tal y como explica Begoña López, gerente de cuentas clave de la cuenta de Data en Utilities de Ayesa, “los ingenieros deben consultar constantemente información técnica de fabricantes para ajustar diversos parámetros, que influyen directamente en la calidad del producto final y en la eficiencia del proceso. Sin embargo, esta consulta resulta rutinaria y tediosa, ya que implica revisar manuales extensos y redactados en un lenguaje muy técnico, con pocas facilidades de búsqueda. Además, parte de la información se presenta en forma de gráficas, un aspecto que, según pudimos comprobar, aún no ha sido adecuadamente resuelto por los modelos de GenAI”. “Nuestro desafío consistió en diseñar un prototipo de asistente virtual experto que permitiera a los técnicos obtener información de manera inmediata, utilizando interacciones simples en lenguaje natural. Finalmente, planteamos una solución híbrida que combina IA Generativa con modelos de Computer Vision para resolver el problema de las gráficas, y se enriqueció con modelos predictivos tradicionales de Machine Learning para ofrecer información adicional basada en la identificación de patrones en los datos históricos de la refinería de Petronor, proporcionando así información valiosa sobre cómo variables externas al modelo teórico de la refinería implican la aplicación de ajustes diferenciales”, añadió Begoña López. RESOLVIENDO LAS DEFICIENCIAS DE GENAI En el ámbito de la Inteligencia Artificial, se ha observado que los modelos de IA Generativa pueden presentar ciertas deficiencias en su comportamiento y en la precisión de sus respuestas. Éstas surgen debido a la naturaleza inherente de estos modelos, que a menudo generan resultados que pueden ser incoherentes o poco realistas. “Sin embargo, con esta iniciativa se ha demostrado que la combinación de modelos de IA, junto con una cuiEL PROYECTO HA DESARROLLADO UN ‘AGENTE EXPERTO’ EN EL PROCESO CATALÍTICO QUE PROPORCIONA SOPORTE PARA LA CONSULTA DE DOCUMENTACIÓN TÉCNICA, ASÍ COMO PARA PREDECIR LAS CONDICIONES DEL REFINO PETRONOR TESTA SOLUCIONES IA GENERATIVA PARA MEJORAR EL RENDIMIENTO DE SUS PLANTAS "Esta iniciativa se ha demostrado que la combinación de modelos de IA, junto con una cuidadosa orquestación de la respuesta, puede conducir a resultados más sólidos y confiables”, explicaron fuentes de Ayesa.
RkJQdWJsaXNoZXIy Njg1MjYx