EF487 - EuroFach Electrónica

11 SAI Y BATERÍAS turas más altas. En comparación, la fiabilidad y la vida útil de las baterías VRLA se reducen drásticamente a temperaturas elevadas, lo que a su vez significa más refrigeración, con un mayor consumo de energía y más emisiones de CO2. La alta densidad energética también permite ahorrar más en bienes e infraestructura. Al ser más pequeños en tamaño y seis veces más ligeros, ocupan menos espacio y requieren menos soporte estructural. Cuando se necesitan, descargan energía rápidamente para satisfacer las necesidades del SAI. Entre cortes, se cargan rápidamente, listos para la próxima emergencia. Dado que sus sistemas electrónicos de supervisión y gestión se integran fácilmente en el edificio, los operadores son plenamente conscientes de su estado y disponibilidad. En todo momento, puede estar seguro de su estado de carga (SOC), y de la vida útil restante, también conocida como estado de salud (SOH). Su electrónica también permite una fácil escalabilidad y optimización para la aplicación, en términos de tensión, potencia y energía. ¿QUÉ PODRÍA IR MAL? Los daños o el mal uso pueden provocar un cortocircuito en una celda de Li-ion, lo que puede provocar una reacción en cadena, conocida como desviación térmica. Esto produce una gran descarga de calor que, si se propaga a las celdas vecinas, puede iniciar su descomposición y liberar gases inflamables calientes. Entre los incidentes de descontrol térmico, que se han reportado ampliamente, se incluye un incendio en el sistema de almacenamiento de energía de baterías de Arizona en 2019, y el escape del presentador de televisión Richard Hammond de un coche en llamas en 2017 durante el rodaje de The Gran Tour para Amazon. Es importante destacar que la especificación de la batería Li-ion en ambos casos era diferente a la recomendada para los centros de datos. ¿QUÉ SUSTANCIAS QUÍMICAS SON MÁS SEGURAS? Mientras hablamos de baterías de Li-ion, el término abarca en realidad, a toda una familia de productos químicos con diferentes características, como la vida útil, densidad de energía y potencia, y la capacidad para funcionar en un amplio rango de temperaturas. Estas sustancias químicas se pueden seleccionar e, incluso, mezclar para ajustar el equilibrio de estas propiedades. La capacidad de una batería para gestionar el rendimiento y contener calor, también se ve seriamente influida por su diseño mecánico, eléctrico y electrónico. Hay dos tipos principales de baterías Li-ion, nombradas según su material cátodo: óxidos de metal y fosfato de hierro. Otro grupo, con material de ánodo de titanato, se utiliza en aplicaciones de alta potencia con ciclos frecuentes de carga y descarga, como la tracción ferroviaria o los vehículos de minería subterránea. Los óxidos metálicos, incluidos el óxido de aluminio y níquellitio-cobalto (NCA), el óxido de cobalto de manganeso y níquel litio (NMC) y el óxido de manganeso de litio (LMO), ofrecen la mayor densidad energética. Son ideales en vehículos eléctricos, por ejemplo, ya que su química es muy activa, pero el inconveniente es que, si se produce un descontrol término, liberan oxígeno. Esto puede alimentar el fuego, potencialmente permitiendo que las temperaturas alcancen los 800 o incluso 1,000°C. Y debido a que liberan oxígeno, los sistemas de supresión de incendios con reducción de oxígeno y los agentes extintores avanzados como las fluoroketonas, no son eficaces en esta situación. Fosfatos de hierro, como el fosfato de hierro litio (LFP) y la propia tecnología SLFP (Súper fosfato de hierro y litio) patentada por Saft, son inherentemente mucho más seguros. El oxígeno de sus moléculas de fosfato está fuertemente unido, y no se libera en la combustión. Esto limita las temperaturas potenciales en caso de descontrol térmico, a alrededor de 200 a 250°C, haciendo improbable la propagación entre las celdas. La desventaja es una densidad de energía más baja (aproximadamente un 30% menos), y una tensión de celda inferior, si se compara con los óxidos de metal, pero son ideales cuando la seguridad es crítica. También ofrecen una larga vida útil, incluso a temperaturas altas, y una buena capacidad del ciclo de descarga/recarga. ¿QUÉ CERTIFICACIÓN DE SEGURIDAD UL E IEC SE APLICA? Las normas internacionales IFC 2018 y NFPA 855 para la seguridad contra incendios en edificios, buscan reducir el riesgo limitando el contenido de energía de las baterías de Li-ion a 20 kWh por sistema, o a 600 kWh por instalación. También exigen un espacio de aire de alrededor de unmetro, entre los armarios. Sin embargo, muchos operadores de centros de datos necesitan sistemas más grandes. Se puede obtener la homologación de un contenido de energía ilimitado, sin espacios, al pasar las rigurosas pruebas UL 9540A sobre potencial de fuga térmica. Cuando se han realizado ensayos con algunos sistemas de óxido metálico, se ha notificado en los registros de La capacidad de una batería para gestionar el rendimiento y contener calor, también se ve seriamente influida por su diseño mecánico, eléctrico y electrónico

RkJQdWJsaXNoZXIy Njg1MjYx