C121_Automatización para la industria 4.0

TRANSFORMACIÓN DIGITAL 40 REFERENCIAS • Bertolini, Massimo; Mezzogori, Davide; Neroni, Mattia; Zam- mori, Francesco (2021): Machine Learning for industrial appli- cations: a comprehensive literature review. In Expert Sys- tems with applications, p. 114820. • Çaydas, Ulas; Ekici, Sami (2012): Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. In Journal of Intelligent Manufacturing 23 (3), pp. 639–650. • Cho, Sohyung; Asfour, Shihab; Onar, Arzu; Kaundinya, Nan- dita (2005): Tool breakage detection using support vector machine learning in a milling process. In International Jour- nal of Machine Tools and Manufacture 45 (3), pp. 241–249. • Cui, Yesheng; Kara, Sami; Chan, Ka C. (2020): Manufacturing big data ecosystem: A systematic literature review. In Robo- tics and computer-integrated Manufacturing 62, p. 101861. • Frank, Alejandro Germán; Dalenogare, Lucas Santos; Ayala, Néstor Fabián (2019): Industry 4.0 technologies: Implemen- tation patterns in manufacturing companies. In Internatio- nal Journal of Production Economics 210, pp. 15–26. • Gobert, Christian; Reutzel, Edward W.; Petrich, Jan; Nassar, Abdalla R.; Phoha, Shashi (2018): Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high re- solution imaging. In Additive Manufacturing 21, pp. 517–528. • Jennings, Connor; Wu, Dazhong; Terpenny, Janis (2016): Fo- recasting obsolescence risk and product life cycle with ma- chine learning. In IEEE Transactions on Components, Pac- kaging and Manufacturing Technology 6 (9), pp. 1428–1439. • Kankar, Pavan Kumar; Sharma, Satish C.; Harsha, Suraj Prakash (2011): Fault diagnosis of ball bearings using machi- ne learning methods. In Expert Systems with applications 38 (3), pp. 1876–1886. • Koulamas, Christos; Kalogeras, Athanasios (2018): Cyber-phy- sical systems and digital twins in the industrial internet of things [cyber-physical systems]. In Computer 51 (11), pp. 95–98. • Kusiak, Andrew; Kurasek, Christian (2001): Data mining of printed-circuit board defects. In IEEE transactions on robo- tics and automation 17 (2), pp. 191–196. • in Lee; Lee, Kyoochun (2015): The Internet of Things (IoT): Applications, investments, and challenges for enterprises. In Business Horizons 58 (4), pp. 431–440. • Libert, Barry; Beck, Megan; Wind, Yoram (2016): Questions to ask before your next digital transformation. In Harv. Bus. Rev 60 (12), pp. 11–13. • Lin, Shih-Yen; Guh, Ruey-Shiang; Shiue, Yeou-Ren (2011): Effective recognition of control chart patterns in autocorre- lated data using a support vectormachine based approach. In Computers & Industrial Engineering 61 (4), pp. 1123–1134. • Manohar, Krithika; Hogan, Thomas; Buttrick, Jim; Banerjee, Ashis G.; Kutz, J. Nathan; Brunton, Steven L. (2018): Predic- ting shim gaps in aircraft assembly with machine learning and sparse sensing. In Journal of manufacturing systems 48, pp. 87–95. • McKinsey Digital (1/25/2018): Why digital strategis fail. Availa- ble online at https://www.mckinsey.com/business-functions/ mckinsey-digital/our-insights/why-digital-strategies-fail, checked on 3/15/2021. • Nambisan, Satish (2017): Digital entrepreneurship: Toward a digital technology perspective of entrepreneurship. In En- trepreneurship theory and practice 41 (6), pp. 1029–1055. • Noble, Charles H. (1999): The eclectic roots of strategy im- plementation research. In Journal of business research 45 (2), pp. 119–134. • Oh, YeongGwang; Busogi, Moise; Ransikarbum, Kasin; Shin, Dongmin; Kwon, Daeil; Kim, Namhun (2019): Real-time quality monitoring and control system using an integrated cost effective support vector machine. In Journal of Mecha- nical Science and Technology 33 (12), pp. 6009–6020. • Osterrieder, Philipp; Budde, Lukas; Friedli, Thomas (2020): The smart factory as a key construct of industry 4.0: A syste- matic literature review. In International Journal of Produc- tion Economics 221, p. 107476. • Perzyk, Marcin; Kochanski, Andrzej; Kozlowski, Jacek; Soro- czynski, Artur; Biernacki, Robert (2014): Comparison of data mining tools for significance analysis of process parameters in applications to process fault diagnosis. In Information Sciences 259, pp. 380–392. • Prieto, Miguel Delgado; Cirrincione, Giansalvo; Espinosa, Antonio Garcia; Ortega, Juan Antonio; Henao, Humberto (2012): Bearing fault detection by a novel condition-monito- ring scheme based on statistical-time features and neural networks. In IEEE Transactions on Industrial Electronics 60 (8), pp. 3398–3407. • Ravikumar, S.; Ramachandran, K. I.; Sugumaran, V. (2011): Machine learning approach for automated visual inspec- tion of machine components. In Expert Systems with appli- cations 38 (4), pp. 3260–3266. • Salgues, Bruno (2018): Society 5.0: industry of the future, te- chnologies, methods and tools: John Wiley & Sons. • Saxena, Abhinav; Saad, Ashraf (2007): Evolving an artificial neural network classifier for condition monitoring of rota- ting mechanical systems. In Applied Soft Computing 7 (1), pp. 441–454. • Susto, Gian Antonio; Schirru, Andrea; Pampuri, Simone; McLoone, Seán; Beghi, Alessandro (2014): Machine learning for predictive maintenance: A multiple classifier approach. In IEEE Transactions on Industrial Informatics 11 (3), pp. 812–820. • Urbinati, Andrea; Chiaroni, Davide; Chiesa, Vittorio; Frattini, Federico (2020): The role of digital technologies in open innovation processes: an exploratory multiple case study analysis. In R&D Management 50 (1), pp. 136–160. • Wan, Jiafu; Tang, Shenglong; Di Li; Wang, Shiyong; Liu, Chengliang; Abbas, Haider; Vasilakos, Athanasios V. (2017): A manufacturing big data solution for active preventivemain- tenance. In IEEE Transactions on Industrial Informatics 13 (4), pp. 2039–2047. • Wang, Lidong; Wang, Guanghui (2016): Big data in cyber- physical systems, digital manufacturing and industry 4.0. In International Journal of Engineering and Manufacturing (IJEM) 6 (4), pp. 1–8. no se construyó en un día”. Ya con un camino andado las organizaciones se tornan más flexibles y se siente más cómodas tomando riesgos que aque- llas que no lo han recorrido. Se debe implicar a las personas con mayor experiencia dentro de la orga- nización para plantear lo proyectos de mejora, pues son ellas y no la inteli- gencia artificial que se aplique a los datos, quienes marcan la verdadera diferencia. Y no olvidar que también se puede contar con el apoyo de uni- versidades, centros de investigación públicos, privados y mixtos. 

RkJQdWJsaXNoZXIy Njg1MjYx