AL70 - Tecnología y productos para la industria alimentaria

PRODUCCIÓN 33 valor nutritivo, al aumentar su digestibilidad y disminuir los niveles de factores antinutricionales, como el ácido fítico, incrementándose, asimismo, el contenido en compuestos con capacidad antioxidante, incluyendo vitamina C y polifenoles. Por ejemplo, se ha descrito que durante la germinación de ‘moth bean’ ( Vigna aconitifolia ) y ‘mung bean’ ( Vigna radiata ) se incrementó en un 28% el contenido de polifenoles (Kestwal et al., 2012) y en 3 veces el de la vitamina C (Rico et al., 2020), respectivamente. IMPLICACIÓN DE LOS GERMINADOS EN TOXIINFECCIONES ALIMENTARIAS A pesar de los beneficios del consumo de este tipo de productos, la germinación es un proceso lento que requiere exponer las semillas durante un tiempo prolongado, de hasta 5 días, a temperaturas templadas (20-25 °C) en un ambiente de elevada humedad, lo que proporciona condiciones adecuadas para el crecimiento de los microorganismos. En ese sentido, las semillas suelen presentar una elevada contaminación microbiana, que oscila entre 103 y 106 ufc/g (Trzaskowska et al., 2018) y estos niveles aumentan durante la germinación, llegando a alcanzar poblaciones tan altas como 108-1011 ufc/g (de León de Lama et al., 2020). Estos elevados recuentos microbianos son la razón principal de la vida útil tan corta que presentan los brotes, de 3 a 10 días en refrigeración, y de que estén implicados, con relativa frecuencia, en casos de toxiinfecciones alimentarias, dado que la mayoría de estos alimentos se consumen sin ningún tipo de preparación culinaria que permita inactivar los microorganismos patógenos asociados a las semillas como Salmonella spp., Escherichia coli O157:H7 y Listeria monocytogenes (Gensheimer y Gubernot, 2016). De hecho, estos productos han sido los protagonistas de uno de los brotes alimentarios con mayor repercusión a nivel europeo, como el originado por una cepa de E. coli O140:H4 productora de la toxina Shiga, ocurrido en 2011 en Alemania, con unas 4.000 personas afectadas y varias decenas de muertes, lo que causó una gran alerta sanitaria (Frank et al., 2011). En Estados Unidos, los germinados estuvieron involucrados, entre 2010 y 2017, en el 27,6% de los brotes de toxiinfecciones alimentarias asociadas al consumo de productos vegetales contaminados (Carstens et al., 2019). INCONVENIENTES DE LOS ACTUALES AGENTES DESCONTAMINANTES En la actualidad, el cloro, en forma de hipoclorito sódico, es el desinfectante más ampliamente utilizado en la descontaminación microbiana de los productos hortícolas. Se emplea a unas concentraciones de 50-200 ppm con un tiempo de contacto de 1-2 minutos. Aunque es un método de bajo coste, fácil de preparar, aplicar y monitorizar, resulta poco efectivo, muy corrosivo, irritante para el manipulador y nocivo para el medio ambiente. Otros inconvenientes que presenta el cloro son su rápida degradación en contacto conmateria orgánica y la formación de diversos compuestos, incluyendo trihalometanos, cloraminas, halocetonas, cloropicrinas o ácidos haloacéticos, que resultan nocivos para la salud humana debido a su potencial mutagénico y cancerígeno (Liang et al., 2019), lo que ha conducido a que su uso esté prohibido en algunos países, como Alemania, Holanda y Bélgica. Por ello, se requieren tratamientos de descontaminación alternativos que resulten más efectivos en la inactivación de los microorganismos, más seguras para el consumidor y más respetuosas con el medio ambiente. En consecuencia, se han explorado varias estrategias para la descontaminación de los germinados como la utilización de agua caliente, agua electrolizada ácida y agua ozonizada, así como la aplicación de radiaciones gamma (Saroj et al., 2006; Phua et al., 2014; Nagar et al., 2016). Aunque estos métodos han resultado relativamente eficaces en

RkJQdWJsaXNoZXIy Njg1MjYx