AE14 - Aeronáutica

FABRICACIÓN ADITIVA 27 través de la optimización topológica, resulta asequible y/o competitiva. Teniendo en cuenta todo lo anterior, las combinaciones de hibridación con mayor potencial identificadas son las siguientes: Forja + DED Mediante la hibridación de estos procesos, se aprovecha la alta productividad que ofrece el proceso de forja, empleándose la FA para añadir ciertos detalles sobre la pieza final. De esta manera se optimiza el aprovechamiento dematerial y se confiere una mayor flexibilidad y dinamismo al sistema de producción. Además de superar las limitaciones naturales de diseño del proceso de forja, las cuales ya han sido mencionadas previamente, la adición de material mediante el aporte directo de energía (DED) permite aumentar el valor añadido de las piezas forjadas (Figura 4). Gracias a la flexibilidad de la fabricación aditiva ante posibles cambios de diseño, será posiblemodificar la geometría final para ajustarse mejor a los requerimientos de cada aplicación específica. Fundición + FA En el caso de la fundición, existen múltiples combinaciones posibles, en función del proceso de FA que se esté considerando. En lo que a hibridación con procesos de fusión en lecho de polvo (PBF) se refiere, se ha estudiado la posibilidad de que elementos previamente fabricados por PBF encajen en el molde de fundición en forma de insertos modulares (Figura 5 a). De esta manera, tras el vertido del material en la cavidad del molde y su posterior solidificación, los elementos fabricados por PBF quedarían embebidos en la pieza. Lo que permitiría obtener una pieza de geometría más compleja y con un mayor valor añadido. En el caso de hibridación con el proceso de aporte directo de material (DED) la sinergia identificada es similar al caso de forja + FA previamente descrita. Es decir, una vez fabricada la pieza de fundición, se emplearía el DED para añadir elementos de detalle sobre esta (Figura 5 b), dotando al diseño del componente de una mayor libertad geométrica y la posibilidad de fabricar componentes personalizados. FA + mecanizado Como ya se ha mencionado anteriormente, todos los procesos de FA necesitan unmecanizado posterior, en mayor o menor medida, para poder lograr las tolerancias dimensionales y los acabados superficiales de la aplicación final. Sin embargo, mediante tecnologías aditivas se pueden fabricar piezas de geometrías muy cercanas a la final, lo cual resulta mucho más eficiente y sostenible que el mecanizado partiendo de un bloque rectangular. En cada caso concreto, se debe escoger el proceso de FAmetálica más adecuado en base a las dimensiones, nivel de detalle y complejidad geométrica de la pieza a fabricar. El aporte directo de energía mediante láser (L-DED) es más adecuado para la fabricación de piezas de tamaño medio (Figura 6 a) y cierto nivel de detalle, debido a la resolución dimensional del mismo, condicionado por la altura de capa y dimensiones de los cordones. Por otro lado, la fabricación aditiva por Arco Eléctrico (WAAM) encaja mejor con la fabricación de piezas de gran tamaño (Figura 6 b), puesto que, en este caso, se alcanzas tasas de aporte de hasta 10 kg/hora. En el caso concreto de la hibridación de L-DED y mecanizado, se ha de tener en cuenta que, al poder trabajar en 5 ejes en ambos casos, las arquitecturas y cinemáticas de los centros de aporte láser y de mecanizado son muy similares. Esta sinergia facilita la integración de ambos procesos Figura 6. Pieza fabricada por hibridación de forja y L-DED, con mecanizado posterior [3]. Figura 5. Características principales de los procesos convencionales. Figura 4. Ejemplo de pieza con gradiente funcional (FGM) compuesto por una matriz de aleación base cobalto y refuerzo de carburo de tungsteno.

RkJQdWJsaXNoZXIy Njg1MjYx