A216 - Maquinaria Agricola

VIÑEDO 88 REFERENCIAS • Bertsch, C., Ramírez-Suero, M., Magnin-Robert, M., Larignon, P., Chong, J., Abou-Mansour, E., Spagnolo, A., Clément, C., Fontaine, F., 2013. Grapevine trunk diseases: Complex and still poorly understood. Plant Pathology, 62 (2), 243-265. https://doi.org/10.1111/j.1365-3059.2012.02674.x • Bock, C. H., Poole, G. H., Parker, P. E., Gottwald, T. R., 2010. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29 (2), 59-107. https://doi.org/10.1080/07352681003617285 • Fischer, M., 2002. A new wood-decaying basidiomycete species associated with esca of grapevine: Fomitiporia mediterranea (Hymenochaetales). Mycological Progress, 1 (3), 315-324. https://doi.org/10.1007/s11557-006-0029-4 • Fontaine, F., Gramaje, D., Armengol, J., Smart, R., Nagy, Z. A., Borgo, M., Rego, C., Corio-Costet, M.-F., 2016. Grapevine trunk diseases. A review (p. 24). OIV Publications. • Gams, W., & Crous, P. W. (2000). «Phaeomoniella chlamydospora» Gen. Et Comb. Nov., a Causal Organism of Petri Grapevine Decline and Esca. Phytopathologia Mediterranea, 39 (1), 112-118. https://doi.org/10.1400/57828 • Mahlein, A.-K., 2016. Plant disease detection by imaging sensors—Parallels and specific demands for precision agriculture and plant phenotyping. Plant disease, 100 (2), 241-251. https://doi.org/10.1094/PDIS-03-15-0340-FE • Mondello, V., Songy, A., Battiston, E., Pinto, C., Coppin, C., Trotel-Aziz, P., Clément, C., Mugnai, L., Fontaine, F., 2018. • Grapevine trunk diseases: A review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Disease, 102 (7), 1189-1217. https://doi.org/10.1094/PDIS-08-17-1181-FE • Ouadi, L., Bruez, E., Bastien, S., Vallance, J., Lecomte, P., Domec, J.-C., Rey, P., 2019. Ecophysiological impacts of Esca, a devastating grapevine trunk disease, on Vitis vinifera L. PLOS ONE, 14 (9), e0222586. https://doi.org/10.1371/ journal.pone.0222586 • Shenk, J. S., Westerhaus, M. O., 1995. Routine operation, calibration, development and network system management manual. NIRSystems Inc., Silver Spring, MD, USA. • Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., Huang, W., 2019. Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165, 104943. https://doi.org/10.1016/j.compag.2019.104943 tado se obtuvo para la combinación de suavizado+SNV con un 97% de muestras correctamente clasificadas tanto en calibración como en VC. La Tabla 2 muestra los valores de sensibilidad (Sen), especificidad (Esp) y error de clase del modelo con mejores resultados. Cabe destacar que los píxeles asintomáticos (clase 1) se clasificaron ligeramente mejor en su clase, ya que alcanzaron un valor de sensibilidad superior al de los píxeles sintomáticos (clase 2). La Figura 3 (b, d) muestra las imágenes de clasificación obtenidas utilizando el modelo PLS-DA con la combinación de Suavizado + SNV, con sus correspondientes fotografías (Figura 3 (a, c)). En la Figura 3c se observan algunos síntomas foliares de yesca. En la clase 1 (asintomática) un 94.46% de los píxeles se clasificaron correctamente como asintomáticos (píxeles de la Figura 3b en azul), mientras que para los píxeles sintomáticos se realizó una predicción a ciegas (Figura 3d). La Figura 3b muestra algunos casos de falsos positivos, indicados por los píxeles de color naranja, es decir, píxeles asintomáticos (sanos) clasificados como sintomáticos (con yesca). Estos se observan en el extremo superior de la imagen, correspondiente a los pecíolos de las hojas, y en las propias hojas, correspondientes a otros síntomas que no son yesca. La Figura 3d muestra como la mayoría de los píxeles clasificados como sintomáticos (píxeles en naranja) eran, de hecho, sintomáticos, como puede observarse en la Figura 3c. Los resultados obtenidos indican la viabilidad de identificar las vides que presentan síntomas de infección por yesca en una fase temprana, cuando los síntomas son apenas perceptibles. Esta información permitiría una gestión diferenciada de las vides identificadas como afectadas por yesca, además de facilitar el seguimiento anual de la incidencia de la enfermedad en el viñedo. CONCLUSIONES El modelo PLS-DA desarrollado aplicando la combinación de pretratamientos suavizado seguido de SNV obtuvo los mejores resultados, con una tasa de precisión en la validación cruzada del 97%. Además, las imágenes de clasificación facilitaron la visualización de la distribución espacial de los píxeles asintomáticos y sintomáticos. A pesar de las limitaciones de este estudio, incluido el bajo número de muestras utilizadas, entre otras, puede concluirse que la tecnología HSI tiene potencial para la detección in-situ de la yesca y posiblemente de otras enfermedades de la madera de la vid. n

RkJQdWJsaXNoZXIy Njg1MjYx