

Axial piston variable pump A7VK Series 10 Metering pump for polyurethane components

RE 94010 Issue: 04.2013 Replaces: 03.2009

- Sizes 12, 28, 55, 107
- Nominal pressure 250 bar
- Maximum pressure 315 bar
- Open and closed design

Features

- Compact design
- Reduced dimensions and mass in comparison to A2VK
- Mounting flange, drive shaft and functions identical to A2VK, thus easy to replace
- Increased corrosion protection through special surface treatment
- Manual adjustment with prescision display and clamp unit to prevent accidental adjustment
- Double shaft sealing made of special material and flushing chamber to identify damage and protect environment
- Improved volumetric efficiency through robust rotary group using proven axial tapered piston technology
- Optionally available with mounted high-pressure relief valve
- Low noise level

Closed design (A7VKG)

- High permissible filling pressure for highly-viscous media or hydraulic fluid by separating the filling channel and pump housing
- Case drain fluid must be discharged

Open design (A7VKO)

The housing is connected to the suction chamber. A case drain line between the housing and reservoir is not requires

Note

The axial piston pump is approved for pumping polyurethane components (polyol and isocynate).

Inhalt

Ordering code	2
Operating pressure range	3
Hydraulic fluids	4
Technical data	4
MA control	5
Dimensions size 12 – open design	6
Dimensions size 12 – closed design	8
Dimensions size 28 – open design	10
Dimensions size 28 – closed design	12
Dimensions size 55 – open design	14
Dimensions size 55 – closed design	16
Dimensions size 107 – open design	18
Dimensions size 107 – closed design	20
High-pressure relief valve direct operated	22
Installation instructions	23
General instructions	24

2 **A7VK Series 10** | Axial piston variable pump Ordering code

Ordering code

C)1	02	03	04		05	06	07	08	09	10	11	1:	2		13
A7	′VК			MA	/	10	м		S			5			-	
Axia	l pisto	on unit				0501			0151							473.00
01	Variab	le bent-a	xis design	n, nominal	pressure	e 250 bar,	maximum	n pressure	e 315 bar							A7VK
Ope	ration	modes														
02	Pump,	, closed o	design													G
	Pump,	, open de	esign									_				0
Size	s (NG)													r	1	-
03	Geom	etric disp	lacement	t, see tabl	e of value	s on page	e 4					012	028	055	107	J
Cont	trol de	vice												_		
04	Contro	ol, manua	al with ha	ndwheel												MA
Seri	eries															
05	Series	1, index	0													10
Vers	ion of	port and	l fixing th	reads												
06	Metric	, port th	reads wit	h profile s	ealing rin	g accordi	ng to DIN	3852								М
Dire	ctions	of rotati	on													
07	Viewe	d from di	rive shaft							(clockwise	(standar	d)			R
											counter-clo	ockwise	(option)		L
Seal	s															
08	FKM (fluor-cao	utchouc),	shaft sea	l in PTFE	(polytetra	afluor ethy	/lene)								S
Mou	nting	flanges										012	028	055	107	
09	Simila	r to ISO :	3019-2 -	4-bolt				80-4				•	-	-	-	KG
	(can b	e change	ed to A2VI	K)			-	100-4				-	•	-	-	LG
							-	125-4				-	-	•	-	MS
								160-4				-	-	-	•	PS
Driv	e shaft	ts										012	028	055	107	
10	Paralle	el keyed s	shaft acco	ording to [DIN 6885			ø20				•	-	-	-	P3
							_	ø25				-	•	-	-	P5
							_	ø30				-	-	•	-	P6
								ø40				-	-	-	•	P9
Serv	ice lin	e ports														_
11	Closed	d design:	threaded	l ports A a	nd B, at s	side, oppo	osite side									5
	Open	design: t	hreaded p	oorts A an	d S, at sid	de, oppos	ite side									
Pres	sure r	elief valv	/es													
12	Witho	ut pressu	re relief v	valves (sta	ndard)											0000
	High-p	oressure i	relief valv	e, diret co	ntrolled,	fixed sett	ing, ${\it \Delta}p$ -se	etting valu	e [bar] op	otional		100				A100
												150				A150
												200				A200
												230				A230
												250				A250
Stan	dard /	special	version													
13	Standa	ard versi	on													0

s

Special version

Operating pressure range

Pressure at the service line ports A or (high-pressure side)	В	Definition		
Nominal pressure $p_{\sf nom}$	250 bar absolute	The nominal pressure corresponds to the maximum design pressure.		
Maximum pressure p_{max} 315 bar absolute		The maximum pressure corresponds to the maximum operating pressure within		
Single operating period	10 s	the single operating period. The sum of the single operating periods must not ex-		
Total operating period	50 h	ceed the total operating period.		
Minimum pressure	10 bar absolute	Minimum pressure on the high-pressure side (A or B) that is required in order to prevent damage to the axial piston unit.		
Rate of pressure change $R_{A \max}$	9000 bar/s	Maximum permissible rate of pressure build-up and pressure reduction during a pressure change over the entire pressure range.		
Closed design				
Pressure at the service line ports A or	B (low-pressure s	ide)		
Minimum filling pressure	> 1 bar absolute	Depending on viscosity and flow, the filling pressure must be adjusted in such a		
Maximum filling pressure	30 bar absolute	way that a complete filling of the low pressure side of the pump is ensured.		
Open design				
Pressure on suction port S (inlet)				
Minimum filling pressure	1 bar absolute	Depending on viscosity and flow, the filling pressure must be adjusted in such a		
Maximum filling pressure 6 bar absolute		way that a complete filling of the low pressure side of the pump is ensured.		

▼ Rate of pressure change R_{A max}

Time t

Pressure definition

Total operating period = $t_1 + t_2 + ... + t_n$

Note

Values for other hydraulic fluids, please contact us.

Shaft seal

Permissible pressure loading

The service life of the shaft seal is affected by the speed of the pump, the case pressure (case drain pressure) and the properties of the medium being pumped. Momentary (t < 0.1 s) pressure spikes of up to 10 bar absolute are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

Note

For monitoring the shaft seal for zero leakage, we recommend connecting a barrier fluid monitor at ports U_1 to U_4 .

The minimum case pressure must be equal to or greater than the barrier fluid pressure. The barrier fluid pressure must be equal to or greater than the external pressure on the outer shaft seal.

Hydraulic fluids

The pump is approved for pumping and metering polyurethane components (polyol and isocynate). For other hydraulic fluids, consult with Bosch Rexroth Service.

Operating viscosity range

The limiting values for viscosity are as follows:

- ► $v_{min} = 5 \text{ mm}^2/\text{s}$
- $v_{max} = 1600 \text{ mm}^2/\text{s}$

Please contact us if different values are required.

On applications with highly viscous fluids bearing flushing is recommended. Recommended flushing flow:

Size	[L/min]
12	2.5
28	4
55	4
107	8

Operating temperature range

- Optimum operating temperature range t = 10 bis 50 °C
- Maximum operating temperature range t_{max} = 80 °C

The permissible operating temperature is dependent on the lubricity of the respective hydraulic fluid.

The maximum operating temperature must not be exceeded even locally.

Filtration of the hydraulic fluid

The filter should be arranged so that only filtered fluid enters the pump. The finer the filter, the longer the service life of the axial piston pump.

• We recommend a filter grade $\eta_{abs} \leq 125 \ \mu m$

Case drain fluid at closed design

The pump ports **A** and **B** are separated from the housing. The case drain fluid must be removed via port T_1 or T_2 using a separate line.

Maximum case drain pressure p_{L max} = 6 bar

Case drain fluid at open design

The housing is connected to the suction chamber. The pressure on port **S** is also applied in the housing and must not exceed 6 bar. A case drain line between the housing and reservoir is not required (port T_1 , T_2 plugged).

Technical data

Size			NG		12	28	55	107
Displacement geometrical, per revolution			V_{gmax}	cm ³	11.6	28.1	54.8	107
			V_{gmin}	cm ³	0	0	0	0
Flow	at $V_{g max}$ and speed n	<i>n</i> = 1500 min ⁻¹	q_{v}	L/min	17.4	42.2	82.2	160.5
		<i>n</i> = 1800 min ⁻¹	q_{v}	L/min	20.9	50.6	98.6	192.6
Power	at $V_{\text{g max}}$, Δp = 250 bar and speed n	<i>n</i> = 1500 min ⁻¹	Р	kW	7.3	17.6	34.2	66.9
		<i>n</i> = 1800 min ⁻¹	Р	kW	8.7	21.1	41.1	80.3
Torque	at $V_{\rm gmax}$ and Δp = 250 bar		Т	Nm	46.2	111.8	218.0	425.7
Mass (approx.)			m	kg	11.7	22.1	31	55

Determining the operating characteristics

Formulas			
Flaur	$V_{g} \cdot n \cdot \eta_{v}$	[L/min]	
FIOW	$q_{v} \equiv \frac{1000}{1000}$		
Torque	$T = V_{g} \cdot \Delta p$	[NIm]	
	$I = \frac{1}{20 \cdot \pi \cdot \eta_{\rm mh}}$		
Dowor	$p = 2\pi \cdot T \cdot n \qquad q_{v} \cdot \Delta p$	[L\\/]	
Power	$P = \frac{1}{60000} = \frac{1}{600 \cdot \eta_{\rm t}}$	- [KVV]	

Key V_g = Displacement per revolution in cm³ Δp = Differential pressure in barn= Speed in min⁻¹ η_v = Volumetric efficiency η_{mh} = Mechanical-hydraulic efficiency η_t = Total efficiency ($\eta_t = \eta_v \cdot \eta_{mh}$)

Note

Theoretical values, without efficiency and tolerances; values rounded

MA control

Turning the handwheel turns a threaded spindle which steplessly adjusts the pump's rotary group, and thus the flow in the range from $V_{\rm g\ min}$ to $V_{\rm g\ max}$. A manual locking device, which is fitted as standard equipment, prevents unintentional adjustment. The precision adjustment display is integrated in the handwheel.

Size		12	28	55	107
Rotation on the handwheel	approx.	23	30	40	50
$V_{g \min}$ to $V_{g \max}$	Us				
Maximum torque in the	approx.	3.5	3.5	3.5	3.5
handwheel T_{max}	Nm				

Closed design

▼ Schematic clockwise

▼ Schematic counter-clockwise

Flow direction

Direction of rotation, viewed from drive shaft							
Design	clockwise	counter-clockwise					
Closed	A to B	B to A					
Open	S to A	S to A					

Open design

Schematic clockwise

▼ Schematic counter-clockwise

6 **A7VK Series 10** | Axial piston variable pump Dimensions size 12 – open design

Dimensions size 12 – open design

Ports		Standard ⁴⁾	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
Α	Service port	DIN 3852	M22 x 1.5; 14 tief	315	0
S	Suction/filling port	DIN ISO 228	G1 1/4; 20 tief	6	0
T ₁	Case drain fluid	DIN 3852	M12 x 1.5; 12 tief	6	Х
T ₂	Case drain fluid	DIN 3852	M12 x 1.5; 12 tief	6	Х
U	Bearing flushing	DIN 3852	M12 x 1.5; 12 tief	6	Х
U ₁ , U ₂	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0
U ₃ , U ₄	Barrier fluid	DIN 3852	M10 x 1; 8 tief	35)	0

1) Center bore according to DIN 332 (thread according to DIN 13)

- 2) Observe the general instructions on page 24 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) The spot face can be deeper than specified in the appropriate standard.

X = Plugged (in normal operation)

⁵⁾ The minimum case pressure must be equal to or greater than the barrier fluid pressure. The barrier fluid pressure must be equal to or greater than the external pressure on the outer shaft seal.

⁶⁾ O = Must be connected (plugged on delivery)

Dimensions size 12 – closed design

Ports		Standard ⁴⁾	Size ²⁾	p _{max} [bar] ³⁾		State ⁷⁾
Α	Service port	DIN 3852	M22 x 1.5; 14 tief	clockwise	30	0
				counter-clockwise	315	-
В	Service port	DIN 3852	M22 x 1.5; 14 tief	clockwise	315	0
				counter-clockwise	30	-
T ₁	Case drain fluid	DIN 3852	M12 x 1.5; 12 tief	6		O ⁶⁾
T ₂	Case drain fluid	DIN 3852	M12 x 1.5; 12 tief	6		X ⁶⁾
U	Bearing flushing	DIN 3852	M12 x 1.5; 12 tief	6		Х
U ₁ , U ₂	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0
U ₃ , U ₄	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0

- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 24 for the maximum tightening torques.
- 3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) The spot face can be deeper than specified in the appropriate standard.
- 5) The minimum case pressure must be equal to or greater than the barrier fluid pressure. The barrier fluid pressure must be equal to or greater than the external pressure on the outer shaft seal.
- Depending on installation position, T₁ or T₂ must be connected (see also installation instructions page 23).
- 7) O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

Dimensions size 28 – open design

Ports		Standard ⁴⁾	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
Α	Service port	DIN 3852	M27 x 2; 16 tief	315	0
S	Suction/filling port	DIN ISO 228	G1 1/2; 20 tief	6	0
T ₁	Case drain fluid	DIN 3852	M18 x 1.5; 12 tief	6	Х
T ₂	Case drain fluid	DIN 3852	M18 x 1.5; 12 tief	6	Х
U	Bearing flushing	DIN 3852	M16 x 1.5; 12 tief	6	Х
U ₁ , U ₂	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0
U ₃ , U ₄	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0

- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 24 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) The spot face can be deeper than specified in the appropriate standard.

6) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

⁵⁾ The minimum case pressure must be equal to or greater than the barrier fluid pressure. The barrier fluid pressure must be equal to or greater than the external pressure on the outer shaft seal.

Dimensions size 28 – closed design

DIN 3852	M27 x 2: 16 tief	ala aluuta a		
	,_,	CIOCKWISE	clockwise 30	
		counter-clockwise	315	_
DIN 3852	M27 x 2; 16 tief	clockwise	315	0
		counter-clockwise	30	_
DIN 3852	M18 x 1.5; 12 tief	6		O ⁶⁾
DIN 3852	M18 x 1.5; 12 tief	6		X ₆)
DIN 3852	M16 x 1.5; 12 tief	6		Х
DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0
DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0
	DIN 3852 DIN 3852 DIN 3852 DIN 3852 DIN 3852 DIN 3852	DIN 3852 M27 x 2; 16 tief DIN 3852 M18 x 1.5; 12 tief DIN 3852 M18 x 1.5; 12 tief DIN 3852 M16 x 1.5; 12 tief DIN 3852 M10 x 1; 8 tief DIN 3852 M10 x 1; 8 tief	counter-clockwise DIN 3852 M27 x 2; 16 tief clockwise counter-clockwise counter-clockwise DIN 3852 M18 x 1.5; 12 tief 6 DIN 3852 M18 x 1.5; 12 tief 6 DIN 3852 M16 x 1.5; 12 tief 6 DIN 3852 M10 x 1; 8 tief 3 ⁵) DIN 3852 M10 x 1; 8 tief 3 ⁵)	counter-clockwise 315 DIN 3852 M27 x 2; 16 tief clockwise 315 counter-clockwise 30 DIN 3852 M18 x 1.5; 12 tief 6 DIN 3852 M18 x 1.5; 12 tief 6 DIN 3852 M16 x 1.5; 12 tief 6 DIN 3852 M16 x 1.5; 12 tief 6 DIN 3852 M10 x 1; 8 tief 3 ⁵ DIN 3852 M10 x 1; 8 tief 3 ⁵

- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 24 for the maximum tightening torques.
- 3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) The spot face can be deeper than specified in the appropriate standard.
- 5) The minimum case pressure must be equal to or greater than the barrier fluid pressure. The barrier fluid pressure must be equal to or greater than the external pressure on the outer shaft seal.
- Depending on installation position, T₁ or T₂ must be connected (see also installation instructions page 23).
- 7) O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

14 **A7VK Series 10** | Axial piston variable pump Dimensions size 55 – open design

Dimensions size 55 – open design

Ports		Standard ⁴⁾	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
Α	Service port	DIN 3852	M33 x 2; 18 tief	315	0
S	Suction/filling port	DIN ISO 228	G2; 27 tief	6	0
T ₁	Case drain fluid	DIN 3852	M18 x 1.5; 12 tief	6	Х
T ₂	Case drain fluid	DIN 3852	M18 x 1.5; 12 tief	6	Х
U	Bearing flushing	DIN 3852	M18 x 1.5; 12 tief	6	Х
U ₁ , U ₂	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0
U ₃ , U ₄	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0

1) Center bore according to DIN 332 (thread according to DIN 13)

- 2) Observe the general instructions on page 24 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) The spot face can be deeper than specified in the appropriate standard.

X = Plugged (in normal operation)

⁵⁾ The minimum case pressure must be equal to or greater than the barrier fluid pressure. The barrier fluid pressure must be equal to or greater than the external pressure on the outer shaft seal.

⁶⁾ O = Must be connected (plugged on delivery)

Dimensions size 55 – closed design

Ports		Standard ⁴⁾	Size ²⁾	p _{max} [bar] ³⁾		State ⁷⁾
Α	Service port	DIN 3852	M33 x 2; 18 tief	clockwise	30	0
				counter-clockwise	315	-
В	Service port	DIN 3852	M33 x 2; 18 tief	clockwise	315	0
				counter-clockwise	30	-
T ₁	Case drain fluid	DIN 3852	M18 x 1.5; 12 tief	6		O ⁶⁾
T ₂	Case drain fluid	DIN 3852	M18 x 1.5; 12 tief	6		X ⁶⁾
U	Bearing flushing	DIN 3852	M18 x 1.5; 12 tief	6		Х
U ₁ , U ₂	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0
U ₃ , U ₄	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0

- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 24 for the maximum tightening torques.
- 3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) The spot face can be deeper than specified in the appropriate standard.
- 5) The minimum case pressure must be equal to or greater than the barrier fluid pressure. The barrier fluid pressure must be equal to or greater than the external pressure on the outer shaft seal.
- Depending on installation position, T₁ or T₂ must be connected (see also installation instructions page 23).
- 7) O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

Dimensions size 107 – open design

Ports		Standard ⁴⁾	Size ²⁾	p _{max} [bar] ³⁾	State ⁶⁾
Α	Service port	DIN 3852	M42 x 2; 20 tief	315	0
S	Suction/filling port	DIN ISO 228	G2 1/2; 30 tief	6	0
T ₁	Case drain fluid	DIN 3852	M18 x 1.5; 12 tief	6	Х
T ₂	Case drain fluid	DIN 3852	M18 x 1.5; 12 tief	6	Х
U	Bearing flushing	DIN 3852	M18 x 1.5; 12 tief	6	Х
U ₁ , U ₂	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0
U ₃ , U ₄	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾	0

1) Center bore according to DIN 332 (thread according to DIN 13)

- 2) Observe the general instructions on page 24 for the maximum tightening torques.
- Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) The spot face can be deeper than specified in the appropriate standard.

X = Plugged (in normal operation)

⁵⁾ The minimum case pressure must be equal to or greater than the barrier fluid pressure. The barrier fluid pressure must be equal to or greater than the external pressure on the outer shaft seal.

⁶⁾ O = Must be connected (plugged on delivery)

Dimensions size 107 – closed design

Ports		Standard ⁴⁾	Size ²⁾	p _{max} [bar] ³⁾		State ⁷⁾
Α	Service port	DIN 3852	M42 x 2; 20 tief	clockwise	30	0
				counter-clockwise	315	-
В	Service port	DIN 3852	M42 x 2; 20 tief	clockwise	315	0
				counter-clockwise	30	-
T ₁	Case drain fluid	DIN 3852	M18 x 1.5; 12 tief	6		O ₆)
T ₂	Case drain fluid	DIN 3852	M18 x 1.5; 12 tief	6		X ⁶⁾
U	Bearing flushing	DIN 3852	M18 x 1.5; 12 tief	6		Х
U ₁ , U ₂	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0
U ₃ , U ₄	Barrier fluid	DIN 3852	M10 x 1; 8 tief	3 ⁵⁾		0

- 1) Center bore according to DIN 332 (thread according to DIN 13)
- 2) Observe the general instructions on page 24 for the maximum tightening torques.
- 3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 4) The spot face can be deeper than specified in the appropriate standard.
- 5) The minimum case pressure must be equal to or greater than the barrier fluid pressure. The barrier fluid pressure must be equal to or greater than the external pressure on the outer shaft seal.
- $_{6)}$ Depending on installation position, \mathbf{T}_{1} or \mathbf{T}_{2} must be connected (see also installation instructions page 23).
- 7) O = Must be connected (plugged on delivery)X = Plugged (in normal operation)

High-pressure relief valve direct operated

NG	A ²⁾	B ²⁾	С	D	E	E1	F	F1	G	н	Service line port A, B ¹⁾	Return port T ₃ ¹⁾
12	32	32	89	112	93.5	142	42	53	131	25	M22 x 1.5	M18 x 1.5
28	40	40	107.5	132.5	127.5	181	54	67	143	26	M27 x 2	M22 x 1.5
55	48	48	114	142	157	221	65	79	162	31.5	M33 x 2	M27 x 2
107	60	60	135.5	168	208	272	86	100	206	38.5	M42 x 2	M33 x 2

Differential pressure setting

The following values are available for selection of the differential pressure setting (fixed setting):

Preferred values [bar]: 100, 150, 200, 230, 250

If not specified in the order, values will be set to the differential pressure Δp = 250 bar.

Mounting

Mounting of the high-pressure relief valve depends on the direction of rotation.

With the closed design, the PRV is always mounted at pressure port **A**. As described, the position of port **A** depends here on the direction of rotation.

In the closed design, the PRV is mounted at pressure port **B** (viewed on drive shaft – right side) for clockwise rotation. For counter-clockwise rotation, it is mounted at pressure port **A** (viewed on drive shaft – left side).

1) DIN 3852, observe the general instructions on page 24 for the maximum tightening torques.

2) Fixing thread according to DIN 13; observe the general instructions on page 24 for the maximum tightening torques.

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. The barrier liquid chambers must be filled with suitable barrier liquid. This must also observed following a relatively long stand-

still as the axial piston unit may drain back to the reservoir via the hydraulic lines.

To achieve favorable noise values, decouple all connecting lines using elastic elements.

In all operating conditions, the suction and case drain lines must flow into the reservoir below the minimum fluid level.

Closed design

The case drain fluid in the pump housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

Open design

The housing is internally connected to the suction chamber. A case drain line between the housing and reservoir is not required.

Note

For monitoring the shaft seals for zero leakage, we recommend connecting a barrier fluid monitor at ports \mathbf{U}_1 to \mathbf{U}_4 .

Installation position

A standard installation shows the drive shaft in a horizontal position. Further installation positions are available upon request.

Installation position	Air bleed	Filling
1 Open design	T ₁	S
$U_1 \qquad U \qquad T_1 \qquad U_4 \\ U_3 \qquad \cdots \qquad \underbrace{U_2 \qquad T_2 \qquad S} \qquad U_2 \qquad \cdots \qquad \underbrace{U_2 \qquad \cdots \qquad \underbrace$		
2 Closed design	T ₁	T ₁
$U_1 U T_1 U_4 U_3 U_3 U_4 U_5 U_5 U_6 U_7 U_7 U_8 $		

Кеу	
В	Service line port
S	Suction/filling port
T_1/T_2	Filling/air bleeding case drain port
$oldsymbol{U}_1$ bis $oldsymbol{U}_4$	Barrier fluid port
U	Bearing flushing

General instructions

- ► The pump A7VK is designed for pumping polyurethane components in open and closed design.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and pressure relief valve on the service line port. Take appropriate safety measures (e.g. by wearing protective clothing).
- Service line ports
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified operating conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports are only designed to accommodate hydraulic lines.
- The data and notes contained herein must be adhered to.

- Before finalizing your design, request a binding installation drawing.
- Not all versions of the product are approved for use in a safety function pursuant to ISO 13849. If you require characteristic values relating to reliability (e.g. MTTFd) for functional safety, please consult the responsible contact person at Bosch Rexroth.
- A pressure relief valve is to be fitted in the hydraulic system.
- The following tightening torques apply:
 - **Fittings:** Observe the manufacturer's instructions regarding the tightening torques of the fittings used.
 - Mounting bolts: For mounting bolts with metric ISO thread according to DIN 13, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.
 - Female threads in the axial piston unit: The maximum permissible tightening torques M_{G max} are maximum values of the female threads and must not be exceeded. For values, see the following table.
 - Threaded plugs: For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_v apply. For values, see the following table.

Ports		Maximum permissible	Required	WAF
Standard	Thread size	tightening torque of the female threads M _{G max}	tightening torque of the threaded plugs $\ensuremath{\text{M}_{\text{V}}}$	hexagon socket of the threaded plugs
DIN 3852 ¹⁾	M10 x 1	30 Nm	15 Nm ²⁾	5 mm
	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm
	M16 x 1.5	100 Nm	50 Nm	8 mm
	M18 x 1.5	140 Nm	60 Nm	8 mm
	M22 x 1.5	210 Nm	80 Nm	10 mm
	M27 x 2	330 Nm	135 Nm	12 mm
	M33 x 2	540 Nm	225 Nm	17 mm
	M42 x 2	720 Nm	360 Nm	22 mm
DIN ISO 228	G1 1/4	720 Nm	-	-
	G1 1/2	960 Nm	-	_
	G2	1200 Nm	-	_
	G2 1/2	2000 Nm	-	_

1) The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.

Bosch Rexroth AG

Mobile Applications Glockeraustraße 4 89275 Elchingen, Germany Tel. +49 7308 82-0 info.ma@boschrexroth.de www.boschrexroth.com $_{\rm 2)}$ In the "lightly oiled" state, the M_V is reduced to 10 Nm for M10 x 1 and to 17 Nm for M12 x 1.5.

© Alle Rechte bei Bosch Rexroth AG, auch für den Fall von Schutzrechtsanmeldungen. Jede Verfügungsbefugnis, wie Kopier- und Weitergaberecht, bei uns. Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.